
J. Parallel Distrib. Comput. 87 (2016) 13–25
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Design of a Method-Level Speculation framework for boosting
irregular JVM applications
Ivo Anjo ∗, João Cachopo
ESW/INESC-ID Lisboa/Instituto Superior Técnico/Universidade de Lisboa, Rua Alves Redol 9, 1000-029 Lisboa, Portugal

h i g h l i g h t s

• JaSPEx-MLS: an automatic parallelization framework for JVM applications.
• Uses Method-Level Speculation.
• Custom STM extended with support for futures, value prediction, and captured memory.
• Optimized execution with custom thread pool buffering and task freezing mechanisms.
• Works on top of the HotSpot JVM and is able to obtain speedups over the Oracle JVM.

a r t i c l e i n f o

Article history:
Received 1 November 2014
Received in revised form
23 August 2015
Accepted 18 September 2015
Available online 30 September 2015

Keywords:
Automatic parallelization
Method-Level Speculation
First-class continuations
Software Transactional Memory
OpenJDK HotSpot JVM

a b s t r a c t

Despite the ubiquity of multicores, many commonly-used applications are still sequential. As a
consequence, many chip designers are still investing on the creation of chips with a small number of
ever-more-complex cores, showing that sequential performance is still a very important issue in some
of today’s computing systems. To tackle this issue, we have developed JaSPEx-MLS: a software-based
automatic parallelization framework targeted at sequential irregular Java/JVM applications, that is based
on Method-Level Speculation and Software Transactional Memory, and works atop the OpenJDK HotSpot
JVM, a state-of-the-art managed runtime. We aim our framework as a software implementation of the
boost feature inmodern CPUs, allowing sequential applications to execute faster onmulticores whenever
parallel versions of those applications are not yet available. In this work, we describe the design of our
framework, and introduce several techniques that when combined allow it to parallelize applications
successfully with minimal overheads on commonly-available multicores.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Despite multicore processors having reached near-ubiquity,
most CPUmanufacturers are still focused on improving their ever-
more-complex cores: a decade after Intel and AMD introduced
multicore computing to their desktop chips, most commonly-
available multicores are still in the single-digit number of cores.
This happens because although many new applications and
frameworks are being built to take advantage of multicores, a
large number of existing applications are still sequential. This
observation leads chipmanufacturers, while continuing their push
for developers to target parallel designs, to still spend considerable
resources to extract even a small amount of extra sequential

∗ Corresponding author.
E-mail addresses: ivo.anjo@ist.utl.pt (I. Anjo), joao.cachopo@ist.utl.pt

(J. Cachopo).

http://dx.doi.org/10.1016/j.jpdc.2015.09.005
0743-7315/© 2015 Elsevier Inc. All rights reserved.
performance. Unfortunately, it is not feasible for a vast majority
of sequential applications to be rewritten to work in parallel
within a reasonable time frame. Additionally, it is still generally
harder and more costly to develop correct and efficient parallel
software than it is to do sequential software. To tackle both of these
issues, an enticing option is thus to use an automatic approach to
parallelization.

Parallelizing compilers [4,26] work by breaking up an appli-
cation into several independent tasks. If the compiler is able to
prove non-interference of the tasks, the application is changed to
execute them in parallel. More recently, speculation-based par-
allelization systems were proposed, that work by running parts
of the application in parallel even if the parallelization system is
not able to prove statically that the result will be correct; correct-
ness validations are instead dynamically performed at run-time.
There have been numerous speculative parallelization systems
proposed: many (e.g. [15,16,20,23]) target parallelization of loops
and very small code blocks; others (e.g. [8,28]) depend on non-
standard hardware with custom speculative features. This leaves

http://dx.doi.org/10.1016/j.jpdc.2015.09.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.09.005&domain=pdf
mailto:ivo.anjo@ist.utl.pt
mailto:joao.cachopo@ist.utl.pt
http://dx.doi.org/10.1016/j.jpdc.2015.09.005


14 I. Anjo, J. Cachopo / J. Parallel Distrib. Comput. 87 (2016) 13–25
Fig. 1. Normal (center) and parallelized with MLS (right) executions of example1().
out most commodity multicores and many dynamic and irregular
applications.

In this article, we describe our work on designing JaSPEx-MLS,
a speculative parallelization framework employing Method-Level
Speculation that targets irregular and dynamic applications that
run on the Java platform. Our framework is entirely software-
based, needing no custom hardware extensions, and relies
on Software Transactional Memory to enable speculative code
execution. We position our framework as a fully software-based
application boost mode similar to the hardware boost modes
provided by modern chips such as Intel’s Turbo Boost [6] and
AMD’s Turbo Core that aims to take advantage of unused CPU
cores to improve single-threaded code execution performance.
Unlike other proposals aimed at managed runtimes (e.g. [19,22]),
we base our work on top of the OpenJDK HotSpot Java Virtual
Machine – a state-of-the-art, production-qualitymanaged runtime
with dynamic optimization and garbage collection – allowing
us to achieve speedups over the normal execution run times of
applications using the widely-deployed Oracle JVM.

In this article we make the following contributions: (1) We
present a technique for automatic conversion of returned values
from methods into futures, allowing them to be stored both in
place of the original local variables and also on the heap, with on-
demand resolving whenever needed (Section 3); (2) We describe
the run-time life-cycle of tasks, and propose two novel techniques
to make better use of the resources available on a multicore ma-
chine: hybrid thread pool buffering and task freezing (Section 4);
(3) We introduce a new STM model that is optimized for specu-
lative parallelization: our model distinguishes between the thread
running in program-order and other speculative threads; supports
keeping futures in the write-set as placeholders for values not yet
resolved; includes support for Return Value Prediction (RVP); and
adopts a variant of captured memory, allowing low-overhead ac-
cess to objects created by the current transaction, while still allow-
ing safe concurrent accesses from other transactions (Section 5).
We present in Section 6 experimental results obtained with our
framework, explore related work in Section 7, and end in Section 8
with our conclusions.

2. The JaSPEx-MLS framework

JaSPEx-MLS is a fully software-based parallelization framework
employing Method-Level Speculation (MLS) and Software Trans-
actional Memory (STM) that is aimed at sequential irregular and
dynamic applications that target the Java/JVM platform. Note that
while our framework is also able to tackle method-based regular
applications, in this expositionwewill focus on the framework fea-
tures that are aimed at irregular and dynamic applications, which
may employ both pointer-based data structures with access pat-
terns that are normally not known until run-time and abstractions
such as inheritance, polymorphism, and encapsulation, which also
complicate static analysis. Our framework is implemented in Java,
and modifications are done via bytecode rewriting.

MLS is a parallelization strategy shown to be a promising
source for parallelism by several researchers (e.g. [7,18,19,25]) that
works by using method calls as speculative task spawn points—
speculatively executing the code following the return of a method
call in parallel with the method call itself. An example is shown
in Fig. 1: when the computeValue() method call is reached, it
triggers the spawn of a new task to execute the code immediately
following the return of the method. We refer to the existing task
that goes on to run the method as the parent task, whereas the
newly-created task that runs the continuation of the method is its
child. This relation implicitly imposes a global order on all tasks that
mirrors the sequential execution order of the original application.

The JaSPEx-MLS framework is divided into two parts: a class-
loader and a runtime component. Before an application class is
loaded, its bytecode goes through two sets of modifications in
preparation for parallelization. The first set of modifications –
transactification – prepares application code to execute specula-
tively, changing it so that all memory accesses are done under the
control of our STM, and additionally adding hooks to allow non-
transactional operations to execute safely and to disallow danger-
ous operations from executing, as described in [1]. The second set,
detailed in Section 3, comprises the selection and transformation
of method call sites into speculative task spawn points that return
futures. After transformation, the modified bytecode is loaded into
the JVMand starts executing under the guidance of the JaSPEx-MLS
runtime.

To implement MLS, our framework relies on our own imple-
mentation, based on [27], of first-class continuations on top of the
OpenJDK HotSpot JVM, as described in [2]. OpenJDK is the result
of the open-sourcing of Oracle’s Java technology, and by work-
ing on top of HotSpot, JaSPEx-MLS benefits from all the features
of a modern production JVM: just-in-time compilation, adaptive
optimization, advanced garbage collection, and optimized concur-
rency primitives. We believe that this combination of software-
only speculation on top of a modern production JVM is the
distinguishing feature of our work.

3. Spawn and future insertion

In this section, we describe the modifications performed to
an application so that it can be parallelized using MLS. As MLS
employsmethod calls as speculative task spawnpoints, the JaSPEx-
MLS framework needs to instrument method call sites so that they
can be used to trigger the creation of new speculative tasks.

As a first step of theMLSmodifications, JaSPEx-MLSmust select
call sites for conversion into speculative task spawn points. This
selection is performed taking into account both global profiling
information and local static analysis.

Global profiling information is gathered using JaSPEx-MLS’s
profiling mode. The profiling mode works by modifying most call
sites to spawn speculative tasks, and then executing the applica-
tion sequentially, taking a number of measurements: time spent
executing speculatively vs programmode, commit and abort rates,
etc. In addition to the profiler output, knowledge from profiling
with third party tools or a programmer’s own knowledge about the
application may also be supplied as input for the call site selection
process.



I. Anjo, J. Cachopo / J. Parallel Distrib. Comput. 87 (2016) 13–25 15
Fig. 2. Conversion of computeValue() into a speculative task spawn point returning a future.
Fig. 3. In this example, the return value from the spawn is saved onto a field, causing a naïve MLS conversion to be unsuccessful, as get() gets immediately called after
the spawn.
Local static analysis is used to determine if within a given
method there is a non-trivial amount of computation between
a task spawn point and its expected synchronization point. We
consider the work performed as non-trivial if between a candidate
spawnpoint and either its synchronizationpoint (an operation that
operates on its return value) or stall (due to a non-transactional
operation being found) we find one of the following: (1) Method
calls. As these calls will execute in parallel with the call from the
spawn point, we consider them as performing enoughwork. These
method calls may themselves be candidate spawn points, and
we evaluate each one separately; (2) Backwards edges. These are
indicative of loops, that we optimistically consider as performing
enough work; (3) End of the method. Whenever the method ends
without a synchronization point or a stall being found, this means
that the method will return and be able to continue speculatively
executing its caller. Categorization of candidate spawn points
is performed by a flow analysis algorithm that simulates code
execution, tracing where futures would be created and used inside
a method.

The output of the task selection process is a list of call sites to
be transformedby the JaSPEx-MLS framework into speculative task
spawn points.

3.1. Spawn insertion

Returning to the example from Fig. 1, let us consider that the
call to computeValue() has been selected for conversion into
a speculative task spawn point. To do so, JaSPEx-MLS replaces
the call to computeValue() with a call to a special framework-
internal method that receives as argument an automatically-
generated Callable that represents the originalmethod call. As a
simplification, in this article we represent this modified call using
the conceptual spawn keyword.

3.2. Future insertion

After transforming a call site into a spawn point, a new issue
arises: dealingwith the return value from themethod. As amethod
call and its continuation are executed concurrently, the return
value is not yet available when the speculative task is spawned—
it will only be available later, when the method finishes working.
Because application code expects method calls to return values, a
challenge presents itself: how can we deal with their absence?

A possible solution for this challenge is to predict the return
value of the method (Section 5.6). Unfortunately, this technique
is not always useful, as for instance a predictor cannot replicate a
method that always returns a new object instance. The alternative
solution employed by our framework is to have the task spawn
operation return a placeholder for the computed value, in the form
of a future. As an example, consider Fig. 2: the conversion entails
changing x from an int into a Future<Integer>, and then
changing accesses to x to instead call the get()method from the
future. In this example the conversion is very straightforward, but
depending on its type and how the return value from the invoked
method is used, the JaSPEx-MLS framework may need to perform
additional modifications:

Return value is void or not needed. Whenever the target of the
spawn operation is avoidmethod, or a value is returned but never
actually assigned, no further modifications need to be made to the
method other than adding the spawn call.

Return value is consumed immediately. On some call sites, the
result from the invoked method is immediately used without
being explicitly saved to the heap or onto local variables. A get()
that immediately follows a spawnmakes the spawn useless, only
adding overhead, and JaSPEx-MLS’s call site selection algorithm
rejects such cases unless when, optionally, RVP is enabled.

Heap Write: Return value is written onto a field or an array
position. An example of this case is shown in Fig. 3, where a
spawn operation is immediately followed by a get(). In this case,
we take advantage of the value itself not yet being needed, as
any write operation to a given location only needs to take effect
before the next read operation to that same location (or discarded
before the next write). Thus, we can reorder the real write until
a read operation needs to be executed. To allow this reordering
to occur, our STM model was designed to allow the registration
of intents to write instead of concrete values, thus enabling our
framework to parallelizemethods that would normally not be able
to be parallelized by other MLS frameworks. Under this model,
futures can be written onto heap memory locations as temporary
replacements for the original values. We can see this reordering
in Fig. 4: although the modification performed is similar to the
previous version, in the new version the actual return value from
computeValue() is not required for the field write to succeed.
We chose to perform this reordering via the STM and not by
reordering the write operation inside the method as it has a
number of advantages: (1) It allows the reordering to work lazily,
if, for instance, the write can be ignored in some paths through
the code; (2) It enables the reordering to work correctly in the
presence of method calling, where some of them may also share
access to the same heap location (e.g. the future may be written
in a method call and only accessed in another); (3) It simplifies
bytecode transformation.



16 I. Anjo, J. Cachopo / J. Parallel Distrib. Comput. 87 (2016) 13–25
Fig. 4. Successful conversion for MLS of example2(), using STM support for futures. In contrast with Fig. 3, the STM stores the future as if it was written to fieldx.
Fig. 5. Problematic replacement of a returned value with a future. Execution may reach line 9 via lines 4 and 5, in which case x is a Future<Integer> ( ) or via line 7
in which case x is still an int ( ), resulting in an error. tags lines where there is an inconsistency.
Stack Write: Return value is kept on the stack or is saved onto a
local variable. JaSPEx-MLS takes advantage of the JVM specification
allowing local variable slots to have any type to substitute the
future for the original value in the same local variable or stack
slot. After this substitution, variables now contain futures, and
thus any reads must be prepended with a call to the contained
future’sget()method so as to retrieve its value. Thismodification
is non-trivial: it entails tracking every read of a local variable
(or stack slot) containing a future and adding a call to get() to
obtain the concrete value from the future immediately before it
is used. Unfortunately, when used blindly this substitution may
lead to issues when multiple branches lead to different types
being possible for the same variable, as exemplified in Fig. 5.
To solve this issue, we again turn to our semantic bytecode
analyzer. As a first step of the future insertion algorithm, JaSPEx-
MLS identifies regions of the method under analysis where a
variable’s type is inconsistent—where the type may either be the
original type or a future depending on the control flow followed
through the method. To detect inconsistencies, we simulate the
state of the stack and the local variables, keeping for each position
a set of the expected types for that position. Afterwards we
check for problematic instructions: those that attempt to operate
on a value where the set of possible types for that value is
bigger than one (e.g. the original and the Future types). To fix
the problem, our framework duplicates basic blocks containing
problematic instructions, afterwards changing the method by
diverting one of the branches that created to jump to the newly-
added duplicate region, as shown in Fig. 6. The fixing process
iterates over each problematic block (if there are multiple) and
may have to be repeated several times if several spawn operations
are involved. As a safeguard, if too much code gets duplicated,
our framework undoes the placement of the spawn and the
subsequent modifications, as the VM will not optimize huge
methods, negating any performance gains from parallelization.

4. Task management

Our framework splits a program into a set of tasks. At any given
time, most of these tasks are speculative, and one is not: the non-
speculative task that is executing code in program-order. Tasks
being executed by JaSPEx-MLS may create further tasks, as part of
the spawn operation. These speculative tasks may be successful
and commit; or they may fail or no longer be needed and abort.
4.1. Spawning a new speculative task

When program execution hits one of the previously-inserted
spawn points, the spawn operation gets triggered, resulting in a
call to a framework-internal method (as described in Section 3.1).
Before proceeding, the framework performs an approximate check
of the state of the thread pool, to avoid wasting work if the pool is
full. If the pool is suspected to be full, we early reject the new task,
and execute the method call and its continuation normally.

If, instead, the framework decides to spawn a new speculative
task, it first creates a new speculative task object. In the current
arrangement, the parent task (that triggered the spawn operation)
will execute the Callable, while the new task being created will
execute the code that follows the return of the spawn operation.
As seen in Fig. 1, the parent task’s thread state will become the
child task’s starting state, and will need to be transferred onto
the new task’s host thread. To transfer state between threads,
we leverage on our JVM with support for continuations: the
framework captures a continuation containing the current state of
the parent task’s thread, and then attaches it to the newly-created
child task. Afterwards, the new task is submitted to the thread pool.
Between the earlier approximate check and the submission of the
new task for execution by the thread pool, the state of the pool
may change, and the pool may reject the new task whenever it
is full—we call such cases late rejects. The cost of an early reject
is comparatively small: it entails the creation of the Callable,
the spawn operation, and the approximate thread pool check. Late
rejects are costly as they include the creation of the new task
object, the continuation capture operation, and task submission to
the pool. As avoiding late rejects is important for performance, we
present in Section 4.3 a technique to reduce them.

After the new speculative task is successfully submitted to
the thread pool, the parent proceeds to execute the Callable it
received. Note that because the JaSPEx-MLS framework supports
nested speculation, the parent task may itself be speculative.
Whenever a thread from the pool picks up the new speculative
task for execution, it resumes the continuation containing the state
received from the parent task, and starts a new STM transaction:
the spawn is now complete, and execution of the code that follows
the spawn point begins.

Note that the parent/child relationship between tasks is dy-
namic, and can change during a task’s execution. JaSPEx-MLS
supports both out-of-order and in-order task spawn: out-of-order
spawning allows the same parent to create several child tasks, its



I. Anjo, J. Cachopo / J. Parallel Distrib. Comput. 87 (2016) 13–25 17
Fig. 6. Corrected version of example3(). Lines 10–12 are duplicated onto lines 16–18, so that either the sum is performed with x containing an int (line 12) or a future
(line 18).
name coming from the observation that newer tasks are created in
an order that does not follow the original sequential program or-
der. In-order spawn happens when the most speculative child task
spawns a further child task, and that task repeats the same process:
new tasks are created, but as their creation order follows from the
execution order in the original sequential program, parenting rela-
tionships are not changed after task spawns. Combining bothmod-
els creates a very flexiblemodel for extracting parallelism from ap-
plications, but also poses challenges to task ordering, as discussed
in Section 4.3.

4.2. Completing and committing a speculative task

Validation and posterior commit/abort of a speculative task
happens whenever: (1) the task finishes its work; (2) the task
attempts to execute a non-transactional operation; (3) the STM
detects that the task’s transaction is doomed to abort; or (4) the
task’s parent finishes its own execution and signals that the child
can also commit its work. A speculative task may only validate
its work and attempt to commit if it is the oldest-running task in
the system—that is, if all of its predecessors, including its parent,
have finished their own execution and committed successfully.
Whenever a task is ready to begin validation, but no result from its
parent is available, it must wait for this value to become available.
Note that it may be possible for the parent itself to be in the same
situation, and for a sequence of speculative tasks to all be waiting
for their own parents. After the parent successfully finishes, the
speculative task attempts to validate its own STM transaction.
Whenever validation fails, the transaction must be aborted, and
the task is either discarded if it was the result of a wrong spawn
decision, or retried by re-resuming the continuation received from
the parent; as before it can validate itself, the task is guaranteed
to be the oldest in the system, this means that the re-execution is
performed in program-order mode, and thus any task is executed
at most twice: once speculatively, and the second time, whenever
needed, in program-order. Whenever validation succeeds, the task
commits its work. Afterwards, the task either continues working
in non-speculative mode, or, if it had already finished its work, is
marked as finished.

4.3. Thread pool management and hybrid thread pool buffering

After a new speculative task is created, it is submitted for
execution to JaSPEx-MLS’s thread pool, which is configured to use a
limited number of threads, based on the number of available CPUs
in the machine.

In our first design, the thread pool used direct hand-offs
between threads. This meant that new tasks were only accepted
if there were any idle threads. This design was chosen to avoid
deadlocks: because, as described in Section 4.1, our design allows
for both out-of-order and in-order speculative spawn operations,
task spawn order becomes unpredictable—this unpredictable
order, when combined with waiting means that if the pool uses
buffering the system can end up deadlocked. Note that the use
of a bigger pool is only a band-aid solution, as deadlocks can
happen with any pool that features a bounded number of threads,
and, in addition, employing significantly more threads than those
supported by the host machine greatly increases scheduling and
context switching overheads. By avoiding buffering, JaSPEx-MLS
ensured that at least one of the threads in the system was making
progress, as it was hosting the oldest task in the system, which
would never need to wait. This scheme also caused thread usage
to be sub-optimal: because no speculative tasks were accepted
unless there were available idle threads, this meant that when a
thread finished itswork, itwould be idle until another active thread
reached a spawn point. In cases where an application had large
tasks, this wouldmean that for long periods of time only a few or in
the worst case only one of the program threads would be working.

As benchmarking revealed that task buffering when it did
not cause any issues was more efficient than direct hand-overs
to the thread pool – in part because it reduced both early and
late rejection rates (Section 4.1) – we now introduce a novel
technique to work around this issue: hybrid thread pool buffering.
This technique works by keeping both a buffered and a non-
buffered work queue for managing tasks. By default, the buffered
work queue is employed, allowing more tasks to be generated
than there are threads in the pool to work on them. The thread
pool is then augmented with a dedicated thread that periodically
polls the state of the buffered queue. Because tasks are queued
at most once, if the polling thread observes the same task at the
head of the buffer for a given time period, it triggers a check of
the current state of each of the pool’s threads. If all threads are
observed to be waiting for an event to wake them up, we conclude
that the system is deadlocked. Note that there is no impact to
program correction if the polling thread suffers from a data race
when checking for deadlocks, as it will only mean that the system
will pessimistically transition to direct hand-offs when it would
have not needed to; In practice, we never observed this to happen.
As such, buffering is disabled, with the pool being switched to only



18 I. Anjo, J. Cachopo / J. Parallel Distrib. Comput. 87 (2016) 13–25
accepting direct hand-offs. To break the deadlock, new temporary
threads are created for each of the tasks still present on the
buffered queue. Because no new tasks are accepted (as all threads
are busy) and all the tasks in the buffer are executed, the task
causing the deadlock is thus guaranteed to be executed, breaking
the deadlock. Afterwards, the temporary threads are retired. Our
hybrid approach is thus able to provide the performance of task
buffering and still ensure correctness by falling back to the earlier
approach whenever needed.

4.4. Task freezing

During execution, a task may need to wait for another task to
finish. Unfortunately, threads hostingwaiting tasks are unavailable
for picking up new work, thus leaving the machine’s parallel
resources underused. A possible approach to solve this challenge
would be for a thread to pick up a new task whenever it was about
to wait, but this approach is problematic because the older task
stays pending on the thread’s stack, and if the newer task ends up
depending on the value from the older task, the system would be
unable to ever finish either task.

To safely support thread reuse, we developed the concept of
task freezing, that solves the above issue by relying on our extended
JVMwith support for continuations. Whenever a thread executing
a task would block, instead we freeze the task, by capturing a
continuation containing the current state of the task and saving
its currently-active STM transaction. This snapshot of the task’s
stack and execution state allows the task to later be reconstructed
in the same or other thread, with the STM transaction being used
to keep the speculative heap state belonging to the task. A frozen
task is associated with its parent task, which will be responsible
for finishing the frozen task’s work after its own—frozen tasks
are not submitted to the thread pool again. After a task is frozen,
the thread that was hosting it is returned to the thread pool,
where it can safely pick up other tasks for execution. The thaw
operation happens when, after finishing its work, the parent task
discovers a frozen child waiting to be completed. As the parent has
finished its own work, its thread can directly switch to working
on the child without needing to return to the thread pool—the
child’s continuation is resumed, its STM transaction is validated,
and execution proceeds from where the freeze left off. Note that it
is possible for a queue of frozen tasks to form, and a parent may
have to thaw several children, always directly switching between
them without returning to the thread pool.

Because capturing continuations adds overhead, we have
further identified and optimized a common case where we can
avoid the need for capturing continuations. Whenever a child task
is able to complete its work, but still needs to wait for its parent to
finish before it can validate and commit its own speculative state
changes, we can use a lightweight task freeze: because the task has
finished its work, there is no longer any thread state that needs to
be preserved, and thus only the task’s STM transaction and return
value are preserved.

5. Custom STMmodel

A common complaint of Software Transactional Memories
is that their added overhead is non-negligible when compared
to other synchronization alternatives. JaSPEx-MLS’s custom STM
model aims to take advantage of specificities of the speculative
parallelization model to minimize overhead as much as possible.
As a consequence, the proposed model is unsafe as a generic
STM model, and as we describe our STM model in the following
sections, we highlight why and how it takes advantage of specific
characteristics of the speculative parallelization model to be
simpler and more efficient.
5.1. Thread execution modes and relaxed isolation

JaSPEx-MLS’s STM recognizes two execution modes for threads
executing tasks: there is a single program-order thread, and
multiple speculative threads. The program-order thread is the
one running the oldest (in terms of original sequential execution
timeline) code from the application. Actions performed by the
program-order thread are not speculative—they are executed with
the same state and data that the normal sequential code would
have, and they never have to be undone. In contrast, speculative
threads are running tasks that are still speculative—they have not
been validated and their work might still need to be undone.
As their work is speculative, and their results are tentative,
these results should be isolated from other concurrently-running
speculative threads.

Because the program-order thread is not running speculatively,
we allow it to directly access andmutate the programstatewithout
extra instrumentation. This direct-access strategy substantially
lowers the overheads of code running in program-order, which
is especially important whenever a stretch of program is being
executed sequentially without any parallel tasks. As consequence
of this modification, isolation is relaxed between the non-
speculative thread and other concurrently-running speculative
threads: speculative threads observe heap mutations performed
by the non-speculative thread as they happen, and thus it is
possible for them to observe inconsistent heap states. This is
where speculative parallelization differs from STM: whereas in
STM it is very important to enforce isolation between concurrent
transactions – otherwise causing inconsistent reads [10], and
breaking opacity [13] – under speculative parallelization the
model already lends itself to inconsistent states, as it is based on
the concept of executing ‘‘future’’ code based on the currently-
available tentative version of the program state. Because these
issues are already a part of any speculative parallelization system,
dealingwith them should not be a part of the STMmodel—it should
be up to the framework to identify and discard invalid tasks. Note
that while isolation can been relaxed, it cannot be eliminated: the
program-order thread still needs to be isolated from speculative
threads, as speculative threads are from each other—otherwise,
this would mean that code from earlier in the program would be
able to observe results from code later in the program.

The breach in isolation between the program-order thread
and speculative threads also works as value forwarding: specula-
tive threads optimistically have earlier access to values from the
program-order thread than they would have if that thread exe-
cuted in isolation.

5.2. Progress

At any given time a program-order thread is executing, the
system is guaranteed to be making progress, as it is executing
code in the original sequential program order and that will always
follow the original application semantics.

When a non-speculative task ends, and while its child task has
yet to switch to executing in non-speculative mode, the system
is not guaranteed to be progressing—only speculative tasks are
active, and they may not be correct. Because of the early commit
feature (Section 5.4), this window is usually very small, and
in practice we have found that there is no need for a heavier
mechanism that would force the child to stop its work and validate
itself immediately.

It is nevertheless possible for all of the tasks on the system to
be running speculatively, and none of them be correct: this means
that,while these tasks donot attempt to performvalidation and are
aborted and restarted, the systemwill not bemaking any progress,
because all the work being performed will be discarded. In this
interval, no useful work will be done, but progress will be resumed
as soon as a thread switches back to non-speculative mode.



I. Anjo, J. Cachopo / J. Parallel Distrib. Comput. 87 (2016) 13–25 19
5.3. STM design choices

Our STM model uses optimistic concurrency control for spec-
ulative threads. Our write-set is a redo-log; writes from specula-
tive threads are kept in a thread-local map and are written-back at
commit time. We employ invisible reads: all read operations are
unsynchronized and change only the thread-local read-set, thus
they are not observable by other concurrent transactions. Each
thread keeps its own read-set: by default the read-set is repre-
sented using a linked-list, but it can also be represented using
a map, whenever there are many repeated accesses to the same
memory locations. Note that repeated accesses may happen be-
cause application code has been written without any intent to use
STM and thus not all working values may be saved to local vari-
ables. The read-set is accurate: each individual memory location is
recorded for later validation—no false conflicts may ever occur. To
avoid adding memory overhead to heap objects, all metadata are
both thread-local and transaction-transient,with no changes being
needed to the in-memory layout of objects and arrays.

Validation is performed in a value-based manner: a read of
a value v from a memory position m is valid if at the time of
validation m still contains v. Whenever we instead use a map to
represent the read-set, we additionally implement early abort: if
some memory location m has changed its value since an earlier
read, the STM signals to the taskmanagement code that the current
transaction is doomed and should be early aborted. Using a value-
based approach both reduces the need to track object versions and
can also reduce aborts.

5.4. Commit operation and commit ordering

Unlike with normal STMs, tasks extracted from a sequential
application have an implicit order: the execution order from the
original application. When these tasks are mapped to transactions,
they must still follow this order, allowing us to simplify several
things. The commit operation does not need to be atomic, as there
is no problem if other threads observe partial commits, as the STM
will flag issues during their own validation. Only one thread – the
one hosting the oldest task – that is transitioning from speculative
into program-order mode, is allowed to commit at any one time,
further simplifying synchronization.

To commit a transaction, we first validate its read-set. Note
that validation always needs to happen, even for read-only
transactions, as we need to ensure that a transaction accessed the
correct heap state while executing—unlike previous differences,
this requirement adds overhead not normally present on other
STMs. Because no older transactions may exist in the system at
commit-time, validation also does not need any kind of extra
synchronization to be correct. If validation succeeds,wewrite-back
all values from the write-set, and the transaction is finished.

When a program-order thread finishes its execution, it is
returned to the thread pool, and its child task can now validate
its work and become the new program-order thread. Similarly to
the implicit commits performed by [28], the retired task flips a flag
on the child task indicating that it should validate its work and
continue executing in program-order; this flag is checked during
each STM read and write operation. This early commit feature
allows threads to switch to program-order mode faster, reducing
unneeded speculative execution overheads.

5.5. Transparent handling of futures in the write-set

As described in Section 3, our STM directly supports futures
on the write-set as placeholders for the returned values from
methods. When a task attempts to read from a future previously
recorded in its corresponding transaction’s write-set, we first call
the future’s get(), waiting if needed for the value to become
available. Afterwards, we cache the result, and further lookups
will return this value directly. At commit-time, each future is
accessed to obtain its value, and this value is written-back to
the heap. During commit, because of the strict commit ordering
that is enforced, the STM never needs to wait for a future to
finish computing—if it found a future, it means that the task that
triggered its corresponding spawn operation was ordered before
the current task, and thus it is guaranteed to have finished itswork.

5.6. Return value prediction

One of the biggest challenges in the MLS model is dealing
with operations that manipulate the return values of methods that
have yet to finish executing. Our framework represents the return
values of these methods with futures, and our modifications to
application code enable futures to bewritten both to local variables
and also to the heap, as described in previous sections. But the
above options are useful only if the value from the method call is
not read immediately; otherwise, no useful workwould be done in
parallel.

An alternative solution to this predicament lies with the use
of Return Value Prediction (RVP) [12,19]. The idea of RVP is that
whenever a task would stall waiting for a value to be produced by
another task, the framework instead predicts a probable value, and
continues executing the task using this assumption.

We have implemented RVP as a novel extension to our STM
model: whenever a prediction is produced, it is registered with
the STM as a read of a specially-reserved memory location. This
memory location is unique for each task (future) from which we
obtain a prediction: it is possible for a speculative task to obtain
multiple predictions corresponding to values from multiple other
tasks. When a task finishes and produces a return value, it writes it
to the special memory location during its commit operation.When
later the task that consumed the prediction attempts to commit,
the memory location hosting the prediction is checked as part of
the normal read-set validation. Because our verification is value-
based, if the prediction was correct, its value will be seen as valid
by the STM, otherwise the task is aborted. With this extension
to our model, the usage of RVP needs no special modifications
to the application. By implementing RVP on the STM, it is also
possible – although this feature is not yet used by JaSPEx-MLS –
to dynamically toggle the usage of RVP on a per-call site basis.

5.7. Adapting captured memory to MLS

Most of the STM overhead from threads executing in specula-
tivemode comes from them having to deal with the read andwrite
sets, instead of directly accessing the objects as the program-order
thread does. As this interception is a source of overheads on many
STMs, reducing them has been an area of active research for STM
developers. The authors of [11] identified that some memory ac-
cesses are made to what they define as captured memory: memory
that is allocated inside a transaction and that cannot escape its al-
locating transactionwhile it is ongoing. This observation is derived
from the knowledge that due to isolation, objects and arrays cre-
ated inside a transactionwill not be accessible to any other transac-
tion until their creating transaction finishes, if at all. Because they
are accessible only to their creating transaction, objects in captured
memorymay instead bemutated directly without causing concur-
rency issues.

Yet, combining captured memory and MLS poses a challenge:
whereas under a normal STM transactions run isolated, and
any newly-created objects and arrays are inaccessible to other
transactions, under the MLS model this does not hold. As an
example, consider Fig. 7: the parent task creates a new instance



20 I. Anjo, J. Cachopo / J. Parallel Distrib. Comput. 87 (2016) 13–25
Table 1
Specifications for the test machines.

Machine Specifications CPU cores Hardware threads Boost

M1 Intel Core i7 4770, 16 GB 4 8 Turbo Boost
M2 Intel Core i5 750, 8 GB 4 4 Turbo Boost
M3 2 × Intel Xeon E5520, 24G B 8 16 Turbo Boost
M4 4 × AMD Opteron 6168, 128 GB 48 48 No
M5 AMD Phenom II X6 1055T, 12 GB 6 6 Turbo Core
Table 2
Benchmarks used for testing JaSPEx-MLS.

Benchmark Description Workload

Avrora Simulator for AVR microcontrollers fib_massive.asm
Sunflowa Raytracer aliens_shiny.sc

Series Fourier coefficient analysis
JGF MonteCarlo Financial simulation SizeB

Euler Flow equations solver

Lonestar Barnes–Hut Gravitational force simulation runC

Aparapib Mandel Mandelbrot set renderer –
Life Conway’s game of life –

a Sunflow’s internal threading support was disabled, leaving only a single-threaded renderer.
b Benchmarks adapted from the Aparapi project.
Fig. 7. Examplemethod and its task division. The parent task (in red) creates object
sc, spawns a new task, and goes on to execute the computeValue()method; the
new task (in green) executes the code following the execution ofcomputeValue()
and accesses sc. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

of SomeClass, making this instance part of the parent’s captured
memory; but in lines 4 and 5 the child task also accesses sc,
breaking the assumption that objects in captured memory are not
accessible to concurrent transactions.

Even though at first it appears that it would not be possible to
take advantage of captured memory in MLS, we can leverage the
fixed commit order imposed by the MLS model to work around
this issue. The key insight is that whenever a speculative task
st1 creates an object, and another task st2 is able to access it,
then by the MLS model’s definition st2 must be more speculative
than st1, which created the object. Thus, and although concurrent
tasks may have access to objects from captured memory, the
MLS model guarantees that their writes will come later than
those from the creating task, which always precedes them. As
such, this is very similar to the semantics that our STM already
provided between the program-order and speculative threads, and
we extended our model by treating accesses to captured memory
as if they are done by a task running in program-order mode, with
othermore speculative threads using the normal STMmechanisms
to protect and validate their accesses. To detect which objects
are part of a transaction’s captured memory, we adopted LICM
[5], a technique that works by tagging every new object with
the fingerprint of its creating transaction. Of special interest to
the MLS model, the addition of captured memory also reduces
transaction aborts. Consider again, for instance, the access in
Fig. 7 to otherField (line 5): if this field was initialized inside
SomeClass’s constructor, this initialization would still be on the
parent task’s (uncommitted) write-set, and so any access done by
the new task would not be able to observe the correct value for the
field. Using capturedmemory, the parent taskwrites directly to the
field, and this write is available to the child task. Without captured
memory, accesses to newly-created objects do not observe the
correct values while they are still being kept on the creating
transaction’s write-set. By allowing direct writes to objects, this
source of mis-speculations is removed.

6. Experimental results

In this section, we present experimental results of application
execution using the JaSPEx-MLS framework. Table 1 describes the
specifications of our test machines. Both boost implementations
were left enabled for our testing; because of this, processor fre-
quency is usually faster for the sequential versions of applications
than whenever JaSPEx-MLS is being used, as our usage of multiple
threads normally precludes boost modes from kicking in. Never-
theless, we believe that this configuration makes our results more
realistic and a better representation of expected end-user ma-
chine configurations. The chosen benchmarks for our testing are
listed in Table 2. We excluded some benchmarks from the JGF and
Lonestar test suites as they were either too small and unrepresen-
tative of modern workloads (with sub-second execution times, in-
cluding VM startup), or unsuitable for MLS, as our profiler rejected
themajority of call sites as being non-profitable for speculation. As
such, these applications are not amenable to parallelization using
our current model, and their execution using JaSPEx-MLS would
necessarily not yield any positive results. We believe that some
benchmarks – especially those from the Lonestar suite – would
be able to be tackled after some manual modifications, but in this
work we are mainly focused on automatic parallelization of appli-
cations without requiring access to the application’s source code.
All benchmarks were run on our custom OpenJDK HotSpot JVM
with support for continuations. The sequential performance of this
JVM closely follows Oracle’s Java 6 SE VM builds, as they share the
same codebase. Unless otherwise stated, each benchmark was ex-
ecuted five times, and the results presented are the average of all
five runs.

6.1. Execution overheads

To isolate and characterize the overheads introduced by the
bytecode changes performed by our framework, we compared the
original sequential execution times for our benchmarks with those
from executing the same benchmarks after bytecodemodification,
but still in single-threaded mode.



I. Anjo, J. Cachopo / J. Parallel Distrib. Comput. 87 (2016) 13–25 21
Fig. 8. Impact of JaSPEx-MLS’s bytecode modifications on sequential execution performance. Values are shown normalized to the execution times of the original sequential
applications.
Fig. 9. Impact of JaSPEx-MLS’s bytecode modifications on sequential execution performance when using only OpenJDK HotSpot’s interpreter mode. Values are shown
normalized to the execution times of the original sequential applications when using the interpreter mode.
Fig. 8 shows the results from our testing using Machine M1;
the results for other machines are very similar and as such
were omitted. The Transactional Execution results only reflect the
bytecode modifications needed for transactification, while the
All Modifications results include both transaction and the spawn
point/future insertion (Section 3). For these tests, JaSPEx-MLS uses
a thread pool with only a single thread, causing all task spawns to
be early rejected.

The biggest impact to the execution time – 10.6× of the original
application’s execution time – happens in the Euler benchmark.
This benchmark has very large methods, in some cases with
150+ LoC and resulting in 1500+ bytecode instructions after
compilation. As such, the transactification of these methods, even
without any other changes to inject spawn points, crosses the JIT
compiler’s maximum code size threshold, so themodified versions
of methods are never properly compiled and optimized. For the
remaining benchmarks, the impact of the performed bytecode
modifications ranges from 1.0× to 1.3× the original execution
times. As we will see in the next test, this happens because most
of the overheads are being removed by the OpenJDK VM’s JIT
compiler.

The presented results show that although the JaSPEx-MLS
framework performs many changes to the applications’ bytecode,
non-speculative execution by the program-order thread is not
severely impacted. This enables applications with a mix of parallel
and sequential workloads to still benefit from our framework.

To analyze the impact of not using an optimizing JIT compiler,
and to simulate the execution of the JaSPEx-MLS framework on top
of a simpler virtual machine, Fig. 9 shows the results of repeating
the benchmarks from Fig. 8 while disabling HotSpot’s JIT compiler
and forcing the interpreter to be used for the entire program
execution; most applications are now heavily affected: apart from
Series and Mandel, other applications take at least 5× longer to
execute, with some taking about 10× and Euler taking 33×. These
results confirm our assertion that having a production VM with
an advanced JIT compiler is crucial to our approach of performing
speculative parallelization on top of the VM.
6.2. Characterizing the impact of a production VM

Our approach of building atop HotSpot contrasts with past
attempts at software-based automatic Java parallelization, which,
as described in Section 7, build atop simpler research VMs, which
are more amenable to themultiple changes needed for speculative
execution. In particular, we highlight two Java-based systems
which build atop simpler VMs: SableSpMT [19] and HydraVM
[22]. SableSpMT is built atop the SableVM, which only provides
an interpreter, and HydraVM is built atop Jikes JVM’s lowest
performance compiler (baseline).

Fig. 10 shows the results of testing our chosen benchmarkswith
those VMs (Barnes–Hut and Sunflow were excluded as they did
not work). The results are shown normalized to HotSpot’s normal
execution mode, and similarly to the previous sections they were
benchmarked using Machine M1. As expected, other VMs cannot
generally compete with HotSpot. On average, execution times are
6.32× more than HotSpot for Jikes, and 15.06× for SableVM. This
means that speculative parallelization systems built atop these
VMs would have to extract speedups capable of overcoming these
performance gaps; otherwise, users would just be better off using
HotSpot.

6.3. Performance improvements from task buffering and freezing

In this section we analyze the impact of the proposed tech-
niques for optimizing the use of machine execution resources: hy-
brid thread pool buffering and task freezing. We present results
from speculatively parallelized executions of the chosen bench-
marks in three different configurations: only task buffering en-
abled, with freezing disabled; only freezing enabled, with task
buffering disabled; and both task buffering and task freezing en-
abled. These results are normalized to a fourth configuration,
where both task buffering and task freezing are disabled. All results
were gathered in MachineM1 with hyper-threading disabled; due
to space limitations we had to omit results from hyper-threading
runs. The objective of these benchmarks is to measure the impact



22 I. Anjo, J. Cachopo / J. Parallel Distrib. Comput. 87 (2016) 13–25
Fig. 10. Testing the sequential versions of our chosen benchmarks with other Java VMs.
Fig. 11. Speedup from task buffering and freezing features.
of these features in the performance of the JaSPEx-MLS framework
both in isolation andwhenused together. The results fromour test-
ing are shown in Fig. 11.

The Avrora benchmark is not able to take advantage of task
buffering, as it always leads to deadlocks and to the thread pool
disabling buffering at run-time. Nevertheless, task freezing alone
is able to improve performance for this benchmark. The Sunflow
benchmark also suffers from deadlocks when task buffering is
used, but when buffering is combined with freezing no deadlocks
are observed. Unfortunately, neither task buffering nor task
freezing has impact on this benchmark. The Series benchmark
shows a very good improvement from using task buffering. We
also see that when used alone, task freezing has little impact on
this benchmark. In contrast, when task freezing is combined with
task buffering, this feature is able to improve on task buffering’s
performance boost. Neither MonteCarlo nor Euler is able to take
advantage of buffering and freezing, which have minimal impact
on their performance. The Barnes–Hut benchmark shows very
good improvement from using buffering whereas freezing has a
detrimental effect when used alone and only a slight positive
effect when used in combination with buffering. The Mandel
benchmark shows a small improvement from both features. The
Life benchmark once again shows that while task buffering alone
improves performance for most benchmarks, freezing is able to
improve performance especially when combined with buffering.

6.4. Speculative parallelization benchmarks

In this section, we present results frommeasuring the speedup
of executing each benchmark while being parallelized by the
JaSPEx-MLS framework. Note that due to the heterogeneity of core
counts and hyper-threading options, some core configurations are
only presented for a subset of the machines. For each benchmark,
we first test with no speculation (as graphed in Figs. 8 and 9 under
All Modifications), and then add results for the different thread
(denoted by t) andhyper-threading (denoted by ht) configurations.
Note also that the results presented use the best framework
settings for each benchmark at each data point, with nested
speculation always enabled. The presented results are normalized
to the execution time of the original unmodified sequential
applications on each of the test machines. The results from this
testing are presented in Fig. 12.

The Avrora benchmark performs some speculation, but task size
ends up being very unbalanced, even after being profiled with
JaSPEx-MLS’s profiling mode. The observed slowdown comes from
speculative execution overheads on very large tasks that end up
dominating the running time. The Sunflow benchmark ends up
being mostly single-threaded. While Sunflow itself has built-in
support for multithreading, JaSPEx-MLS is currently not able to
extract much parallelism from the single-threaded version of the
benchmark without refactoring it to make it more MLS-friendly,
and no speedup is attained in this benchmark. Unlike Avrora, most
of the single-threadedwork is performed in non-speculativemode,
and as such the observed slowdown is in line with the expected
transactification and framework overheads.

The Series benchmark yields good scalability up to 8 thread
configurations, reaching a speedup of around 4× for most
machines, with a maximum of 4.6× on M1. After 8 threads, no
more parallelism is able to be extracted from the application,
and configurations with more than 8 threads yield the same or
worse performance results. The MonteCarlo benchmark is heavily
optimized for sequential performance, avoiding object allocation
by reusing many objects, which leads to a very high abort rate due
to failed STM validations—around 25%, even after profiling. Too
much time is lost on re-executions, penalizing the application’s
run time, and the extracted parallelism is not able to compensate
this impact. JaSPEx-MLS is not able to attain speedup in this
benchmark.



I. Anjo, J. Cachopo / J. Parallel Distrib. Comput. 87 (2016) 13–25 23
Fig. 12. Speedup for each of the tested benchmarks.
The Euler benchmark, as expected from the results of the
bytecode modification overhead analysis, is not able to recover
from themassive slowdown imposed by the JIT compiler declining
to optimize the application’s methods, as evidenced by the
poor results even in the nospec configuration, which on other
benchmarks is usually ranged 0.8–1×. The Barnes–Hut benchmark
yields very interesting results: in this benchmark, all three
Intel-based machines (M1–M3) are able to attain a speedup of
around 1.6×, while both AMD-based machines (M4 and M5)
are never able to even match the performance of the original
application. Intel’s architectures are able to surpass AMD’s in
this test, highlighting both the difference in microarchitecture
implementation and the potential for future improvements on
AMD’s part.

Finally, both Mandel and Life implement easily-parallelizable
regular workloads, and are able to scale linearly with the number
of CPU cores on the test machines, with both reaching a speedup
of around 44× on our 48-core test machine.

7. Related work

Before application code can be speculatively executed in paral-
lel, it needs to be transactified. Because transactification can have
a non-negligible impact on application execution performance,
many researchers have proposed the usage of hardware specula-
tionmechanisms [8,17,28].Whilewe believe that special hardware
support would benefit our framework greatly, its current lack of
availability clashes with our goal of providing a software frame-
work to boost applications on commonly-available multicore pro-
cessors.

Recent software-based parallelization systems try to tackle
the overheads of transactification, similarly to JaSPEx-MLS, by
optimizing the transactification and transactional model as much
as possible: in SpLIP [16], a speculation system that targetsmostly-
parallel loops, the authors propose that speculations perform in-
place updates and commit their work in parallel, thus lowering
execution overhead. This contrasts with our approach of using a
redo log, and increases the penalty for bad speculation decisions.
In [15] the authors propose STMlite, that aims at using a small
number (2–8) of speculative threads to extract parallelism from
loops, avoiding the need to transactify the whole program. During
execution, transactional read and write operations are encoded
using hash-based signatures that are then checked by a central
bookkeeping and commit thread.While our STM also avoids costly
synchronization by allowing only a single thread to be mutating
the heap at any given time (with exceptions for capturedmemory),
the thread that does so is not fixed, allowing us to benefit from



24 I. Anjo, J. Cachopo / J. Parallel Distrib. Comput. 87 (2016) 13–25
locality, instead of having to coordinate with a central thread.
Fastpath [23] is also aimed at extracting parallelism from loops
using speculation. This system distinguishes between the thread
running in program-order, and other speculative threads: the
lead thread always commits its work, and has minimal overhead,
whereas speculative threads suffer from higher overheads and
may abort. The authors also propose two different STM-inspired
algorithms for conflict detection: value and signature-based.
The Fastpath value-based algorithm as presented shares many
similarities with JaSPEx-MLS’s relaxed isolation model.

Rountev et al. [21] studied the parallelism available onmultiple
Java sequential benchmarks, and proposed that parallelization be
broken into two steps: (1) themodification of a sequential program
into a still sequential but concurrency-friendly program; and
(2) the parallelization itself, while also introducing a new
technique to identify parallelism-inhibiting memory accesses,
which would be used as part of a tool aiming to solve the first
step of the parallelization effort. As our framework concentrates
on the latter part of the parallelization effort, it benefits from tools
such as the one proposed to reduce dependences that lead to failed
speculative executions.

Baptista [3] exposed the issues with contention management
whenused in the context of speculative parallelization, and instead
proposed the concept of a conflict-aware task scheduler. This work
was based on the older JaSPEx framework, and we hope to explore
its application to JaSPEx-MLS in the future.

The Deuce [14] Java STM framework performs automatic
transactification of classes by replacing instructions to read/write
fields and arrays with calls to the framework, automatically
modifying methods that are tagged with the @Atomic annotation
to execute with transactional semantics.

The idea of using futures in Java coupled with speculative
execution was also explored in a different context by Welc
et al. [24]: in their work on safe futures for Java, the authors extend
Java with support for futures that are guaranteed to respect serial
execution semantics. In contrast with our automatic approach, to
use safe futures, programmers need to change their codemanually
to employ futures, including rewriting program logic in cases
where the return value from a method is immediately consumed
or written to a variable.

JCilk [9] is a Java-based language for parallel programming
that provides a programming style very similar to Fork/Join. It
extends Java with three new keywords, and includes very detailed
and strict semantics for exception handling, aborting of side
computations, and other interactions between threads that try to
minimize the complexity of reasoning about them. Similarly to the
safe futures, programmers need to prepare their programmanually
for execution using JCilk.

SableSpMT [19] is a Java MLS-based automatic parallelization
framework. In contrast with our approach, a simpler task spawn
model is used: although the main thread is allowed to spawnmul-
tiple speculative tasks, the tasks themselves cannot spawn fur-
ther speculative tasks. The system was benchmarked using the
SPECjvm98 benchmark suite, but no speedup was achieved over
the original application run times due to the added overheads. In
contrast with SableSpMT, JaSPEx-MLS fully supports nested spec-
ulation, and in our system the garbage collector works normally,
whereas in SableSpMT it invalidates all running speculations. The
base SableVM is also a simpler VM, with sequential performance
below production VMs such as our OpenJDK-based VM.

HydraVM [22] builds on top of the Jikes JVM’s baseline compiler
to extract parallelism from Java applications by splitting their code
into parallel semi-independent blocks (superblocks) that are then
executed with support from STM. Superblock identification can be
done either online or offline, and it works by modifying the VM to
identify basic blocks and their accessed variables, and by tracing
the execution of those basic blocks to form a program execution
graph. In contrast with JaSPEx-MLS, the superblock approach can
capture both loops and method invocations, although it is not
clear how polymorphism and dynamic control flows are dealt with
by the authors. In addition, as superblocks are built from smaller
basic blocks, some of those may be repeated, possibly leading to
large superblocks which will be hard to optimize. The obtained
results are very positive, with speedups of between 2× and 5× on
the chosen benchmarks. Unfortunately, the Jikes baseline compiler
chosen for this work is the simplest of Jikes’ compilers, performing
no optimizations and as such, the baseline used for this work is
considerably lower than if a production VM was chosen.

8. Conclusions

In this work, we have presented a number of novel techniques
for improving MLS parallelization and described their implemen-
tation into a complete end-to-end solution for speculative par-
allelization: the JaSPEx-MLS framework. Our framework needs
no special hardware support, and works atop a state-of-the-art
production-quality managed runtime, the OpenJDK HotSpot VM.

We first described how JaSPEx-MLS statically analyzes and
prepares application bytecode for speculative parallelization using
our novel algorithm for converting returned values from methods
into futures, allowing them to be stored in place of the original
values on both the stack and on the heap. We explained the
framework’s run-timemodel, and introduced novel techniques for
efficiently using machine resources: hybrid thread pool buffering
and task freezing. We then detailed our custom STM model
targeted at speculative execution that includes support for futures,
return value prediction, and captured memory.

We evaluated the impact of the bytecode modifications per-
formedby our framework, showing that an optimizingVMcanhide
much of the overhead introduced by our static bytecode prepa-
ration step. We presented results from speculatively parallelizing
a number of applications, and showed that our framework can
achieve speedups even when compared to Oracle’s stock JVM.

Our results demonstrate that the JaSPEx-MLS framework is
a feasible alternative to hardware boost implementations for a
number of irregular and dynamic Java/JVM applications.

Acknowledgments

This work was supported by national funds through FCT—
Fundac̨ão para a Ciência e a Tecnologia, both under project PEst-
OE/EEI/LA0021/2013 and under project PTDC/EIA-EIA/108240/
2008 (the RuLAM project).

References

[1] I. Anjo, J. Cachopo, A software-based method-level speculation framework for
the Java platform, in: Proceedings of the 25th International Conference on
Languages and Compilers for Parallel Computing, LCPC 2012, Springer-Verlag,
2013, pp. 205–219.

[2] I. Anjo, J. Cachopo, Improving continuation-powered method-level specula-
tion for JVM applications, in: Proceedings of the 13th International Conference
on Algorithms and Architectures for Parallel Processing, ICA3PP’13, Springer-
Verlag, 2013, pp. 153–165.

[3] D. Baptista, Task scheduling in speculative parallelization (Master’s thesis),
Instituto Superior Técnico, 2011.

[4] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, Parallel
programming with Polaris, Computer 29 (12) (1996) 78–82.

[5] F. Carvalho, J. Cachopo, Lightweight identification of captured memory for
software transactionalmemory, in: Proceedings of the 13th International Con-
ference on Algorithms and Architectures for Parallel Processing, ICA3PP’13,
Springer-Verlag, 2013, pp. 15–29.

[6] J. Charles, P. Jassi, N. Ananth, A. Sadat, A. Fedorova, Evaluation of the Intel
Core i7 turbo boost feature, in: Proceedings of the 2009 IEEE International
Symposium on Workload Characterization, IISWC’09, IEEE Computer Society,
2009, pp. 188–197.

http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref1
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref2
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref3
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref4
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref5
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref6


I. Anjo, J. Cachopo / J. Parallel Distrib. Comput. 87 (2016) 13–25 25
[7] M. Chen, K. Olukotun, Exploiting method-level parallelism in single-threaded
Java programs, in: Proceedings of the 1998 International Conference
on Parallel Architectures and Compilation Techniques, PACT-1998, IEEE
Computer Society, 1998, pp. 176–184.

[8] M. Chen, K. Olukotun, The Jrpm system for dynamically parallelizing Java
programs, ACM SIGARCH Comput. Archit. News 31 (2) (2003) 434–446.

[9] J. Danaher, I. Lee, C. Leiserson, The JCilk language formultithreaded computing,
in: OOPSLA 2005 Workshop on Synchronization and Concurrency in Object-
Oriented Languages, SCOOL, 2005.

[10] D. Dice, O. Shalev, N. Shavit, Transactional locking II, Distrib. Comput. (2006)
194–208.

[11] A. Dragojević, Y. Ni, A. Adl-Tabatabai, Optimizing transactions for captured
memory, in: Proceedings of the 21st Annual Symposium on Parallelism in
Algorithms and Architectures, SPAA’09, ACM Press, 2009, pp. 214–222.

[12] S. Hu, R. Bhargava, L. John, The role of return value prediction in exploiting
speculative method-level parallelism, J. Instr. Level Parallelism 5 (1) (2003).

[13] R. Guerraoui, M. Kapałka, On the correctness of transactional memory,
in: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP’08, ACM Press, 2008, pp. 175–184.

[14] G. Korland, N. Shavit, P. Felber, Noninvasive concurrency with Java STM,
in: Third Workshop on Programmability Issues for Multi-Core Computers,
MULTIPROG-3, 2010.

[15] M. Mehrara, J. Hao, P. Hsu, S. Mahlke, Parallelizing sequential applications on
commodity hardware using a low-cost software transactional memory, ACM
SIGPLAN Notices 44 (6) (2009) 166–176.

[16] C. Oancea, A. Mycroft, T. Harris, A lightweight in-place implementation
for software thread-level speculation, in: Proceedings of the 21st Annual
Symposium on Parallelism in Algorithms and Architectures, SPAA’09, ACM
Press, 2009, pp. 223–232.

[17] M. Ohmacht, IBM Blue Gene/Q Team, Hardware support for transactional
memory and thread-level speculation in the IBMBlue Gene/Q system, in: 2011
Workshop on Wild and Sane Ideas in Speculation and Transactions, 2011.

[18] J. Oplinger, D. Heine, M. Lam, In search of speculative thread-level parallelism,
in: Proceedings of the 1999 International Conference on Parallel Architectures
and Compilation Techniques, PACT-1999, IEEE Computer Society, 1999,
pp. 303–313.

[19] C. Pickett, C. Verbrugge, Software thread level speculation for the Java language
and virtual machine environment, in: Proceedings of the 18th International
Conference on Languages and Compilers for Parallel Computing, LCPC 2005,
Springer-Verlag, 2006, pp. 304–318.

[20] A. Raman, H. Kim, T. Mason, T. Jablin, D. August, Speculative parallelization
using software multi-threaded transactions, ACM SIGPLAN Not. 45 (3) (2010)
65–76.

[21] A. Rountev, K. Valkenburgh, D. Yan, P. Sadayappan, Understanding parallelism-
inhibiting dependences in sequential Java programs, in: Proceedings of the
2010 IEEE International Conference on SoftwareMaintenance, ICSM2010, IEEE
Computer Society, 2010, pp. 1–9.
[22] M. Saad, M. Mohamedin, B. Ravindran, HydraVM: Extracting parallelism
from legacy sequential code using STM, in: Proceedings of the 4th USENIX
Conference on Hot Topics in Parallelism, HotPar’12, USENIX Association, 2012,
pp. 1–7.

[23] M. Spear, K. Kelsey, T. Bai, L. Dalessandro, M. Scott, C. Ding, P. Wu,
Fastpath speculative parallelization, in: Proceedings of the 22nd International
Conference on Languages and Compilers for Parallel Computing, LCPC 2009,
Springer-Verlag, 2010, pp. 338–352.

[24] A. Welc, S. Jagannathan, A. Hosking, Safe futures for Java, ACM SIGPLAN Not.
40 (10) (2005) 439–453.

[25] J. Whaley, C. Kozyrakis, Heuristics for profile-driven method-level speculative
parallelization, in: Proceedings of the 2005 International Conference on
Parallel Processing, ICPP’05, IEEE Computer Society, 2005, pp. 147–156.

[26] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S. Liao,
C. Tseng, M. Hall, M. Lam, J. Hennessy, SUIF: An infrastructure for research
on parallelizing and optimizing compilers, ACM SIGPLAN Not. 29 (12) (1994)
31–37.

[27] H. Yamauchi, Continuations in servers, in: JVM Language Summit 2010, 2010.
[28] R. Yoo, H. Lee, Helper transactions: Enabling thread-level speculation via

a transactional memory system, in: 2008 Workshop on Parallel Execution
of Sequential Programs on Multi-core Architectures, PESPMA 2008, 2008,
pp. 63–71.

Ivo Anjo obtained hisM.Sc. degree in Information Systems
and Computer Engineering in 2009 from Instituto Supe-
rior Técnico, University of Lisbon. He is a researcher at the
Software Engineering Group at INESC-ID Lisboa. His cur-
rent research interests include speculative parallelization,
software and hardware transactional memory, and non-
blocking concurrency.

João Cachopo is an Assistant Professor at the Department
of Computer Science and Engineering of the Instituto Su-
perior Técnico (IST), University of Lisbon. He received his
Ph.D. degree in Computer and Software Engineering from
IST in 2007, is the leader of the Software Engineering
Group at INESC-ID, and was until 2012 the Chief Software
Architect of the FénixEDU project. His current research in-
terests include transactional memories, parallel program-
ming, web engineering, and software architectures. He led
the development of the first real-world application of a
Software Transactional Memory to a production system

(the FénixEDU project).

http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref7
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref8
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref10
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref11
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref12
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref13
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref15
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref16
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref18
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref19
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref20
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref21
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref22
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref23
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref24
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref25
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref26
http://refhub.elsevier.com/S0743-7315(15)00172-0/sbref27

	Design of a Method-Level Speculation framework for boosting irregular JVM applications
	Introduction
	The JaSPEx-MLS framework
	Spawn and future insertion
	Spawn insertion
	Future insertion

	Task management
	Spawning a new speculative task
	Completing and committing a speculative task
	Thread pool management and hybrid thread pool buffering
	Task freezing

	Custom STM model
	Thread execution modes and relaxed isolation
	Progress
	STM design choices
	Commit operation and commit ordering
	Transparent handling of futures in the write-set
	Return value prediction
	Adapting captured memory to MLS

	Experimental results
	Execution overheads
	Characterizing the impact of a production VM
	Performance improvements from task buffering and freezing
	Speculative parallelization benchmarks

	Related work
	Conclusions
	Acknowledgments
	References


