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Abstract. Many common workloads rely on arrays as a basic data struc-
ture on top of which they build more complex behavior. Others use them
because they are a natural representation for their problem domains.

Software Transactional Memory (STM) has been proposed as a new
concurrency control mechanism that simplifies concurrent programming.
Yet, most STM implementations have no special representation for ar-
rays. This results, on many STMs, in inefficient internal representations,
where much overhead is added while tracking each array element indi-
vidually, and on other STMs in false-sharing conflicts, because writes to
different elements on the same array result in a conflict.

In this work we propose new designs for array implementations that
are integrated with the STM, allowing for improved performance and
reduced memory usage for read-dominated workloads, and present the
results of our implementation of the new designs on top of the JVSTM,
a Java library STM.

Keywords: Parallel Programming, Software Transactional Memory

1 Introduction

Software Transactional Memory (STM) [10,15] is a concurrency control mecha-
nism for multicore and multiprocessor shared-memory systems, aimed at simpli-
fying concurrent application development. STM provides features such as atom-
icity and isolation for program code, while eliminating common pitfalls of con-
current programming such as deadlocks and data races. During a transaction,
most STMs internally work by tracking the memory read and write operations
done by the application on thread-local read and write-sets.

Tracking this metadata adds overheads to applications that depend on the
granularity of transactional memory locations. There are two main STM designs
regarding granularity: Either word-based [4,8] or object-based [7,11]. Word-based
designs associate metadata with either each individual memory location, or by
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mapping them to a fixed-size table; whereas object-based designs store transac-
tional information on each object or structure’s header, and all of the object’s
fields share the same piece of transactional metadata.

Arrays, however, are not treated specially by STM implementations. Thus,
programmers either use an array of transactional containers in each position, or
they wrap the entire array with a transactional object. Neither option is ideal,
if we consider that array elements may be randomly but infrequently changed.

Because arrays are one of the most elemental data structures on computing
systems, if we hope to extend the usage of STM to provide synchronization and
isolation to array-heavy applications, minimizing the imposed overhead is very
important.

In this paper, we describe how existing transactional arrays are implemented,
and explore new approaches that are integrated with the STM, achieving bet-
ter performance and reducing memory usage for read-dominated workloads. Our
work is based on the Java Versioned Software Transactional Memory (JVSTM) [2,3],
a multi-version STM.

The rest of this work is organized as follows. Section 2 introduces the JVSTM
transactional memory. Section 3 describes current black-box approaches to ar-
rays. Section 4 introduces the new proposals for handling arrays. In Section 5,
we compare the different array implementations. Experimental results are pre-
sented in Section 6, followed, in Section 7, by a survey of related work. Finally, in
Section 8, we finish by presenting the conclusions and future research directions.

2 The JVSTM Software Transactional Memory

The Java Versioned Software Transactional Memory (JVSTM) is a pure Java
library implementing an STM [3]. JVSTM introduces the concept of versioned
boxes [2], which are transactional locations that may be read and written during
transactions, much in the same way of other STMs, except that they keep the
history of values written to them by any committed transaction.

Programmers using the JVSTM must use instances of the VBox class to rep-
resent the shared mutable variables of a program that they want to access trans-
actionally. In Java, those variables are either class fields (static or not) or array
components (each element of an array).

As an example, consider a field f of type T in a class C whose instances may be
accessed concurrently. To access f transactionally, the programmer must do two
things: (1) transform the field f in C into a final field that holds an instance of
type VBox<T>, and (2) replace all the previous accesses to f by the corresponding
operations on the contents of the box now contained in f.

JVSTM implements versioned boxes by keeping a linked-list of VBoxBody
instances inside each VBox: Each VBoxBody contains both the version number of
the transaction that committed it and the value written by that transaction. This
list of VBoxBody instances is sorted in descending order of the version number,
with the most recent at the head. The key idea of this design is that transactions
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typically need to access the most recent version of a box, which is only one
indirection-level away from the box object.

Yet, because the JVSTM keeps all the versions that may be needed by any
of the active transactions, a transaction that got delayed for some reason can
still access a version of the box that ensures that it will always perform consis-
tent reads: The JVSTM satisfies the opacity correctness criteria [9]. In fact, a
distinctive feature of the JVSTM is that read-only transactions are lock-free and
never conflict with other transactions. They are also very lightweight, because
there is no need to keep read-sets or write-sets: Each read of a transactional
location consists only of traversing the linked-list to locate the correct VBoxBody
from which the value is to be read. These two characteristics make the JVSTM
especially suited for applications that have a high read/write transaction ratio.

Currently there are two versions of the JVSTM that differ on their commit
algorithm. The original version of the JVSTM uses a lock-based commit algo-
rithm, described below, whereas more recently Fernandes and Cachopo described
a lock-free commit algorithm for the JVSTM [6]. Unless otherwise stated, the
approaches described in this paper apply to both versions of the JVSTM.

To synchronize the commits of read-write transactions, the lock-based JVSTM
uses a single global lock: Any thread executing a transaction must acquire this
lock to commit its results, which means that all commits (of read-write trans-
actions) execute in mutual exclusion. After the lock acquisition, the committing
transaction validates its read-set and, if valid, writes-back its values to new VBox-
Body instances, which are placed at the head of each VBox’s history of values.

To prevent unbounded growth of the memory used to store old values for
boxes, the JVSTM implements a garbage collection algorithm, which works as
follows: Each committing transaction creates a list with all the newly created in-
stances of VBoxBody and stores this list on its descriptor. The transaction descrip-
tors themselves also form a linked-list of transactions, with increasing version
numbers. When the JVSTM detects that no transactions are running with ver-
sion number older than some descriptor, it cleans the next field of each VBoxBody
instance in the descriptor, allowing the Java GC to clean the old values.

3 Current Black-Box Array Implementations

In this section, we describe the two most common alternatives to implement
transactional arrays with the JVSTM if we use only its provided API — that is,
if we use the JVSTM as a black-box library.

3.1 Array of Versioned Boxes

The most direct and commonly used way of obtaining a transactional array with
the JVSTM is the array of VBoxes. A graphical representation of the resulting
structure is shown in Figure 1.

One of the shortcomings of this approach is the array initialization: All po-
sitions on the array need to be initialized with a VBox before they are used,
typically as soon as the array is created and before it is published.
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Trying to perform lazy initialization highlights one of the issues of implement-
ing such a data-structure outside the STM: the underlying native Java array is
not under the control of the STM, and as such the programmer must provide his
own synchronization mechanism for this operation. Side-stepping the synchro-
nization provided by the STM while at the same time using the STM must be
done carefully, or key STM characteristics might be lost, such as lock-freedom
and atomicity, and common concurrent programming issues such as deadlocks
might arise again. We will see in Section 4.1 a variant of this approach that uses
lazy initialization and knowledge of the JVSTM’s internals.

Since all VBoxes and their associated VBoxBody instances are normal Java
objects, they still take up a considerable amount of memory when comparing to
the amount needed to store each reference on the VBox array. As such, it is not
unexpected for the application to spend more than twice the space needed for
the native array to store these instances in memory.

3.2 Versioned Box with Array

The other simple implementation of a transactional array is one where a single
VBox keeps the entire array, as shown in Figure 2.

Creation of this kind of array is straightforward, with overheads comparable
to a normal non-transactional array. Array reads are the cheapest possible, only
adding the cost of looking up the correct VBoxBody to read from; but writes are
very expensive, as they need to duplicate the entire array just to change one of
the positions. In addition, a single array write conflicts with every other (non
read-only) transaction that is concurrently accessing the array, as the conflict
detection granularity is the VBox holding the entire array.

Moreover, there is a very high overhead in keeping the history of values: For
each version, an entire copy of the array is kept, even if only one element of the
array was changed. This may lead the system to run out of memory very quickly,
if writes to the array are frequent and some old running transaction prevents
the garbage collector from running.

In conclusion, this approach is suited only for very specific workloads, with
zero or almost-zero writes to the array. On the upside, for those workloads,
it offers performance comparable to native arrays, while still benefiting from



Lightweight Transactional Arrays for Read-Dominated Workloads 5

Type value = getVBox(index).get(); // Reading from a VBoxArray
getVBox(index).put(newValue); // Writing to a VBoxArray

VBox<Type> getVBox(int index) { // Helper method getVBox
VBox<Type> vbox = transArray[index];
if (vbox == null) {
vbox = new VBox<Type>((VBoxBody<Type>) null);
vbox.commit(null, 0);
if (!unsafe.compareAndSwapObject(transArray, ..., null, vbox))
vbox = transArray[index];

}
return vbox;

}

Fig. 3. Code for the VBoxArray approach

transactional properties. It is also the only approach that allows the underlying
array to change size and dimensions dynamically with no extra overhead.

4 New Array Proposals

In this section, we describe three proposals to implement transactional arrays
that improve on the black-box approaches presented in the previous section.

4.1 VBoxArray and VBodyArray

The VBoxArray approach is obtained by adding lazy creation and initialization of
VBoxes to the approach presented in Section 3.1. The main operations for this
implementation are shown in Figure 3.

The getVBox() helper method first tries to obtain a VBox from the specified
array position. If it exists, it is returned; otherwise a new one is created using
an empty body, that is immediately written back, and tagged with version 0.
This is conceptually the same as if the VBox was created by a transaction that
ran before every other transaction and initialized all the boxes. The VBox is then
put into the array in an atomic fashion: Either the compareAndSwap1 operation
succeeds, and the box is placed on the underlying array, or it fails, meaning that
another thread already initialized it.

We can take the VBoxArray one step further and obtain the VBodyArray by
doing away with the VBoxes altogether. The insight is that a VBox is needed only
to uniquely identify a memory location on which we can transactionally read
and write. If we provide our transactional array inside a wrapper VBodyArray
class, we can use another method to identify uniquely a memory position: a pair
<VBodyArray, index>. Using this pair, we no longer need the VBoxes, because
the underlying array can directly contain the VBoxBody instances that would
normally be kept inside them; initialization can still be done lazily.

1 Available in the sun.misc.Unsafe class included in most JVM implementations.
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Fig. 4. The VArray transactional array

The VBodyArray saves a considerable amount of memory for larger arrays,
and also lowers overhead on reads, as less memory reads need to be done to
reach the values.

4.2 VArray

The VArray approach, shown in Figure 4, does away entirely with the normal
storage mechanisms in the JVSTM: No VBoxes and no VBoxBodies are needed.
It is designed to have the upsides of the VBox with Array approach described
in Section 3.2, but to eliminate or minimize the downsides.2

The main design idea is to have an array that keeps both a set of values
tagged with a version and a log containing the remaining versions.

Based on this design, two strategies are possible:

– The underlying array keeps the oldest values for each array position, and
newer values are kept in the log; there must be a strategy to decide when to
transfer values from the log to the main array.

– The underlying array keeps the latest values for each array position, and
older values are kept in the log; there must be a strategy to allow garbage
collection of older values from the log.

We argue that the second choice is more in line with the spirit of the JVSTM’s
design, because newer transactions find their values quickly, while older long-
running transactions have to search through the log to find their older values.
Additionally, JVSTM’s existing garbage collection algorithm can, with minor
modifications, be used to perform garbage collection of the log.

Reading from a VArray We start by reading the value directly from the array
and then we check the array version: If it is older than the current transaction
version number, we may return the value that we read directly from the array.
If, instead, an older value is needed, we have to check the log to find the value
corresponding to our current version, and return it, if found; otherwise, we may
safely return the value originally read from the array because that position was
never changed, although other array positions were. Figure 5 shows the code to
read from a VArray.

2 The full source-code for the JVSTM with the VArray class is available on the jvstm-
lock-free branch at http://groups.ist.utl.pt/esw-inesc-id/git/jvstm.git/.

http://groups.ist.utl.pt/esw-inesc-id/git/jvstm.git/
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Type value = array.values.get(index); // Read value from array (volatile read!)
int version = array.version; // Read array version

// If the array did not change, return the value read, otherwise check the log
if (version <= currentTransactionVersion) return value;
Type logValue = array.log.getLogValue(index, currentTransactionVersion);
return logValue != null ? logValue : value;

Fig. 5. Reading from a VArray

int txNumber; // Version of transaction being committed
VArrayEntry<Type>[] writesToCommit; // Sorted list of writes to be committed

// Create and initialize logEntryIndexes to be used in the log
int[] logEntryIndexes = new int[writesToCommit.length];
for (int i = 0; i < writesToCommit.length; i++)
logEntryIndexes[i] = writesToCommit[i].index;

// Create and place log node
Type[] logEntryValues = (Type[]) new Object[writesToCommit.length];
array.log = new VArrayLogNode<Type>(logEntryIndexes, logEntryValues,

txNumber - 1, array.log);
// Bump array version
array.version = txNumber;
// Writeback values
int i = 0;
for (VArrayEntry<Type> entry : writesToCommit) {
// Read old value from the array, and copy it to the log
logEntryValues[i++] = array.values.get(entry.index);
// Write the new value
array.values.lazySet(entry.index, entry.object); // Volatile write!

}

Fig. 6. Committing changes to a VArray

Writing and Committing to a VArray Writing to a VArray is similar to
writing to a VBox: the value to be written is added to the transaction’s write-set.

During the commit, the write-back to a VArray proceeds as follows:

1. Create a new log entry with the indexes of the array positions that are going
to be overwritten and add that entry to the head of the log;

2. Update the array version;
3. Finally, backup to the log and write-back each changed array position. Each

write operation is done with volatile semantics.

These steps need to be done while inside the commit lock. On the lock-free
version of the JVSTM, because there is no commit lock, each array is locked
individually; note that this approach eliminates the property of lock-freedom
from the commit of transactions that wrote to a VArray, but lock-freedom is
restored when no active transactions are writing to VArray instances. Figure 6
shows a simplified version of the VArray commit code.
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Fig. 7. Structure of a VArrayLogNode

Accessing the Log Figure 7 shows the structure of a VArrayLogNode. The VAr-
ray log is a linked list of VArrayLogNodes containing the older values of array
positions that were overwritten by newer transactions. Inside each VArrayLogN-
ode, a version field keeps the last version when the values contained in it were
valid. This means that if the log contains two nodes, with versions 50 and 40,
then the node with version 50 is valid for transactions with a version in the range
]40, 50] and the older entry is valid for transactions with versions ]0, 40].

Moreover, each VArrayLogNode maintains two arrays: logEntryIndexes and
logEntryValues. The first keeps an ordered list of indexes that were changed by
the transaction that created the log node, and the second keeps the values that
were at those indexes, and were overwritten in the main array.

When a transaction with version n needs to look up the log for the value in
index index, it first traverses the log nodes until it finds the log node with the
smallest version >= n. It then checks that node for the index, by performing
a binary search on the logEntryIndexes array. If this search finds the index,
it returns the corresponding value. Otherwise, the search is resumed from the
previous node, until a value is found, or the beginning of the log is reached —
meaning that the requested value should be read from the main array.

Synchronization As we saw, the read algorithm first reads the value from the
array, and then reads its version. To commit a new value we reverse this order:
First the committer updates the version, and then writes back the new values.

Yet, without additional synchronization, we have a data race and the fol-
lowing can happen: The update of the array value may be reordered with the
update of the version, which means that a reader may read the new value written
by the committing transaction, but still read the old version value, causing the
algorithm to return an invalid (newer) value to the application.

To solve this issue, and taking into account the Java memory model [12]
we might be inclined to make the field that stores the array version volatile.
Unfortunately, this will not work: If the committing thread first does a volatile
write on the array version, and then updates the array, if the reading thread
does not observe the write to the array version, no synchronizes-with3 relation
happens, and so the update to the array value may be freely reordered before

3 The volatile keyword, when applied to a field states that if a thread t1 writes to
normal field f1 and then to volatile field f2 ; then if other thread observes the write
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Table 1. Comparison of array implementations. The memory overheads are considered
for two workloads: a workload where only a single position is ever used after the array
is created, and one where the entire array is used.

Black-box Implementations New Approaches

Conflict Detection Position Entire Array Position Position Position

O
ve

rh
ea

d
s

Ti
m

e Creation Very High Very Low Very Low Very Low Very Low
Reading Normal Very Low Normal Low Low
Writing Normal Very High Normal Normal High
History Normal Very High Normal Normal Low

Single Position N Box, N Body 1 Box, 1 Body 1 Box, 1 Body 1 Body -
Entire Array N Box, N Body 1 Box, 1 Body N Box, N Body N Body -

Array of VBoxes VBox with Array VBoxArray VBodyArray VArray

M
em

.

the version write, making a reader read the new value, and miss the new version.
The other possible option would be for the committing thread to first write-back
the value, and then update the array version with a volatile write; in this case,
a simple delay or context switch between the two writes would cause issues.

As such, we can see that no ordering of writes to update both the array value
and version can work correctly if just the version is declared volatile. As it turns
out, the commit algorithm works correctly if only the array value is read and
written with volatile semantics (through the usage of the AtomicReferenceArray
class), and the version as a normal variable. This way, the reader can never read
a newer value and an old version, because by volatile definition, if we observe
a value, we at least observe the correct version for that value, but may also
observe a later version, which poses no problem: In both cases the algorithm will
correctly decide to check the log.

Garbage Collection We also extended the JVSTM garbage collection algo-
rithm to work with the VArray log. As the linked list structure of the array log is
similar to the linked list of bodies inside a VBox, new instances of VArrayLogNode
that are created during transaction commit are also saved in the transaction
descriptor, and from then the mechanism described in Section 2 is used.

5 Comparison of Approaches

Table 1 summarizes the key characteristics of the multiple approaches described
in this paper. The single position memory overhead test case considers an array
of n positions, where, after creation, only one of those positions is ever used
during the entire program; conversely the entire array test case considers one
where every position of the array is used. The memory overheads considered are
in addition to a native array of size n, which all implementations use.

The main objective of this work was the creation of an array implementation
that provided better performance for read-only operations, while minimizing
memory usage and still supporting write operations without major overheads.
We believe VArray fulfills those objectives, as it combines the advantages of the
“VBox with Array” approach, such as having a very low memory footprint and

on f2, it is guaranteed that it will also see the write to f1, and also every other write
done by t1 before the write to f2. This is called a synchronizes-with [12] relationship.
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read overhead, with advantages from other approaches, notably conflict detection
done at the array position level, and low history overhead. Writes to a VArray are
still more complex than most other approaches, but as we will see in Section 6
they can still be competitive.

6 Experimental Results

We shall now present experimental results of the current implementation of VAr-
ray. They were obtained on two machines: one with two Intel Xeon E5520 pro-
cessors (8 cores total) and 32GB of RAM, and another with four AMD Opteron
6168 processors (48 cores total) and 128GB of RAM, both running Ubuntu
10.04.2 LTS 64-bit and Oracle Java 1.6.0 22. For our testing, we compared VAr-
ray to the Array of VBoxes approach, using the array benchmark,4 which can
simulate multiple array-heavy workloads. Before each test, the array was en-
tirely initialized— note that after being fully initialized, the Array of Versioned
Boxes and VBoxArray behave similarly. Each test was run multiple times, and
the results presented are the average over all executions.

Figure 8 shows the scaling of VArray versus the Array of VBoxes approach for
a read-only workload, with a varying number of threads. Each run consisted of
timing the execution of 1 million transactions, with an array size of 1,000,000 on
the 8-core machine, and 10,000,000 on the 48-core machine. Due to the reduced
overheads imposed on array reads, VArray presents better performance.

Figure 9 shows the scaling of VArray versus a Array of VBoxes approach for
a workload with a varying percentage of read-only and read-write transactions.
Each read-only transaction reads 1000 (random) array positions, and each read-
write transaction reads 1000 array positions and additionally writes to 10. Each
run consisted of timing the execution of 100,000 transactions. As we can see, the
increased write overhead of VArray eventually takes its toll and beyond a certain
number of cores (that depend on the percentage of read-write transactions),
VArray presents worse results than the Array of VBoxes approach. These results
show that while VArray is better suited for read-only workloads, if needed it can
still support a moderate read-write workload.

To test the memory overheads of VArray, we measured the minimum amount
of memory needed to run a read-only workload in the array benchmark, on a
single CPU, for an array with 10 million Integer objects. Due to its design,
VArray was able to complete the benchmark using only 57MB of RAM, 10% of
the 550MB needed by the Array of VBoxes approach.

Finally, we measured, using a workload comprised of 10% read-write trans-
actions and 90% read-write transactions, and 4 threads, the minimum memory
needed for both approaches to present acceptable performance, when compared
with a benchmark run with a large heap. In this test, VArray took approximately
25% longer to execute with a 256MB heap, when compared to a 3GB heap; runs
with an Array of VBoxes needed at least 800MB and also took 25% longer.

4 http://web.ist.utl.pt/sergio.fernandes/darcs/array/

http://web.ist.utl.pt/sergio.fernandes/darcs/array/
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Fig. 8. Comparison of VArray versus the Array of VBoxes approach for the array bench-
mark, with a read-only workload on our two test systems.
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Fig. 9. Comparison of VArray versus the Array of VBoxes approach for the array bench-
mark, with varying number of read-write transactions (10%, 50% and 100%) on the
48-core AMD machine.

7 Related Work

Software Transactional Memory (STM) [15] is an optimistic approach to con-
currency control on shared-memory systems. Many implementations have been
proposed — Harris et al.’s book [10] provides a very good overview of the subject.

CCSTM [1] is a library-based STM for Scala based on SwissTM [5]. Similarly
to the JVSTM, the programmer has to explicitly make use of a special type
of reference, that mediates access to a STM-managed mutable value. Multiple
memory locations can share the same STM metadata, enabling several levels
of granularity for conflict detection. The CCSTM also provides a transactional
array implementation that eliminates some of the indirections needed to access
transactional metadata, similar to our VBodyArray approach.

The DSTM2 [11] STM framework allows the automatic creation of transac-
tional versions of objects based on supplied interfaces. Fields on transactional
objects are allowed to be either scalar or other transactional types, which dis-
allows arrays; to work around this issue, the DSTM2 includes the AtomicArray



12 Ivo Anjo and João Cachopo

class that provides its own specific synchronization and recovery, but no further
details on its implementation are given.

Another approach to reducing the memory footprint of STM metadata on
arrays and other data structures is changing the granularity of conflict detection.
Word-based STMs such as Fraser and Harris’s WSTM [8] and TL2 in per-stripe
mode [4] use a hash function to map memory addresses to a fixed-size transac-
tional metadata table; hash collisions may result in false positives, but memory
usage is bounded to the chosen table size.

Marathe et al. [13] compared word-based with object-based STMs, including
the overheads added and memory usage; one of their conclusions is that the stud-
ied systems incur significant bookkeeping overhead for read-only transactions.
Riegel and Brum [14] studied the impact of word-based versus object-based
STMs for unmanaged environments, concluding that object-based STMs can
reach better performance than purely word-based STMs.

Our VArray implementation is novel because it presents the same memory
overheads of word-based schemes, while still detecting conflicts for each individ-
ual array position. Processing overhead for read-write transactions is still larger
than with word-based approaches, because the transaction read-set must contain
all individual array positions that were read, and all of them must be validated
at commit-time, which is something word-based STMs can further reduce.

8 Conclusions and Future Work

Software transactional memory is a very promising approach to concurrency.
Still, to expand into most application domains, many research and engineering
issues need to be examined and solved. The usage of arrays is one such issue.

In this work we presented the first comprehensive analysis of transactional
array designs, described how arrays are currently implemented on top of the
JVSTM, and presented two implementations that improve on previous designs.
In particular, the VArray implementation has memory usage comparable to na-
tive arrays, while preserving the lock-free property of JVSTM’s read-only trans-
actions. In addition, our experimental results show that VArray is highly perfor-
mant for read-dominated workloads, and competitive for read-write workloads.

Future research directions include researching the possibility of a lock-free
VArray commit algorithm, and exploring the usage of bloom filters for log lookups.
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