
Improving Continuation-Powered Method-Level
Speculation for JVM Applications?

Ivo Anjo and João Cachopo

ESW
INESC-ID Lisboa/Instituto Superior Técnico/Universidade de Lisboa

Rua Alves Redol 9, 1000-029 Lisboa, Portugal
{ivo.anjo,joao.cachopo}@ist.utl.pt

Abstract. Most applications running on the Java Virtual Machine (JVM)
make extensive use of dynamic object-oriented programming features
such as inheritance, polymorphism, and encapsulation. This makes them
very hard or even impossible to analyze statically, defeating most of the
automatic parallelization research done so far for traditional compute-
heavy scientific applications.

In this paper, we propose and evaluate multiple extensions to the JaSPEx-
MLS framework, a speculative parallelization framework that is aimed at
irregular applications. This framework works atop a modified JVM and
employs Method-Level Speculation (MLS), a task-identification tech-
nique that is better suited for irregular applications. Our custom JVM
is a modified version of the OpenJDK Hotspot VM that was extended
with support for first-class continuations, while still inheriting Hotspot’s
high-performance features such as just-in-time compilation, adaptive op-
timization, state-of-the-art garbage collection, and support for the latest
Java versions. JaSPEx-MLS automatically modifies applications to use
Software Transactional Memory (STM) and to allow the spawn and syn-
chronization of speculative tasks in a scheme similar to Fork/Join par-
allelism. Speculative execution is supported by our novel relaxed STM
model, which is tightly coupled with our framework and includes support
for integrating with Futures.

We present novel techniques for improving MLS runtime task extraction
and coordination, describe our implementation of those techniques onto
JaSPEx-MLS, and present experimental results showing their impact on
both reducing speculative execution overheads and extracting further
parallelism from sequential applications.

Keywords: Speculative Parallelization, Method-Level Speculation, Fork/Join
Parallelism, First-Class Continuations, OpenJDK Hotspot JVM

? This work was supported by national funds through FCT – Fundação para a Ciência
e a Tecnologia, both under project PEst-OE/EEI/LA0021/2013 and under project
PTDC/EIA-EIA/108240/2008 (the RuLAM project).

mailto:ivo.anjo@ist.utl.pt
mailto:joao.cachopo@ist.utl.pt
mailto:ivo.anjo@ist.utl.pt,joao.cachopo@ist.utl.pt

2 Ivo Anjo and João Cachopo

1 Introduction

With multicore processors reaching near-ubiquity in the computing market, it
becomes ever more important for applications to take advantage of all the avail-
able parallel execution resources of modern computers.

Because retrofitting concurrency onto existing applications is usually a hard
and error-prone task, an enticing alternative is the usage of automatic paralleliza-
tion. Parallelizing compilers [2] attempt to automatically extract concurrency by
proving that parts of a sequential application can be safely executed in parallel.
The problem is that they fail to parallelize many irregular applications [6,9] that
employ dynamic data structures, loops with complex dependences and control
flows, and other abstractions, which are very hard or even impossible to analyze.
Thread-Level Speculation (TLS) systems [8,11,15] attempt to work around this
issue by optimistically running parts of the application in parallel, even if the
TLS system is not able to statically prove that there will be no dependences. In-
stead, correctness is dynamically ensured at runtime, by validating now-parallel
operations during or after their execution.

In previous work [1], we proposed the JaSPEx-MLS speculative paralleliza-
tion framework, which employs Method-Level Speculation (MLS), a technique
that uses method calls as speculative task spawn points [3, 9, 11, 18], combined
with Software Transactional Memory (STM) for buffering and tracking the spec-
ulative program state, and supported by first-class continuations. In that work,
our main focus was on the code modifications needed for safe speculative execu-
tion of Java bytecode, while at the same time minimizing the runtime overheads
imposed by our custom STM, but we left some open issues that limited the
amount of parallelism our framework was able to extract — our runtime thread
management and coordination/result fetching model was very simple, and as it
relied on waiting between tasks, an unbalanced speculative task selection could
easily lead to system underuse, as most tasks would spend considerable time
stopped while waiting for results from other tasks.

In this paper, we tackle our previously open issues with multiple novel tech-
niques for MLS runtime task extraction and coordination that rely on state
transfer and buffering using continuations. We build upon our previous work by:
– Extending existing experimental support for continuations in the OpenJDK

Hotspot JVM to better fit the use-cases of MLS parallelization (Section 3);
– Exploring how continuations can be used to implement MLS in the JaSPEx-

MLS framework (Section 4.2);
– Presenting a technique that allows the thread pool to buffer tasks for execu-

tion, while still preserving correctness and avoiding deadlocks (Section 4.3);
– Proposing a novel task freeze technique where we allow threads that host

speculative tasks to be reused instead of blocking by freezing tasks for later
resume, possibly by another thread (Section 4.4);

– Introducing an extension to our custom software transactional memory model
for allowing STM-assisted return value prediction (Section 4.5);

– Evaluating the impact of the proposed techniques in extracting parallelism
and reducing speculative execution overheads (Section 5).

Continuation-Powered Method-Level Speculation for JVM Applications 3

Ti
m
e example1()

computeValue()

for loop

sum

Thread 1

for loop

sum

example1()

computeValue()

spawn

join

Thread 1

Thread 2

return

int example1() {
 int x = computeValue();
 int y = 0;
 for (...) y += ...;
 return x+y;
}

Fig. 1. Execution of example1() method when run normally (center) and parallelized
with MLS (right). Note that computeValue() is executed in the normal program order
(at the start of example1()); the for loop is executed speculatively.

2 Method-Level Speculation

Method-level speculation (MLS) is a speculative parallelization strategy first
discussed in the context of Java in [3], and shown to be a promising source for
parallelism by [9, 11, 18]. This technique works by speculatively executing the
code following the return of a method call in parallel with the method call itself.

MLS shares many similarities with the Fork/Join (F/J) model, which was
also recently introduced into the Java platform with the Java Fork/Join frame-
work [7]. The MLS spawn operation works similarly to the fork operation, but
with an important distinction. In the MLS model the new task spawned (forked)
starts executing the code following the spawn point, and the method itself is ex-
ecuted as part of the previously existing task, whereas in the F/J model the
reverse happens: a new task is created to execute the method call being forked,
and the code following the fork is the one executed as part of the previously
existing task — note that this distinction is in the models themselves, regardless
of the runtime strategies chosen for execution. For both F/J and MLS, the join
operation is similar, and serves to synchronize a pair of tasks where one needs
to obtain the result of another’s computation. In addition, the F/J framework
targets parallel algorithms, where tasks have simpler and less strict ordering
semantics than those required of an MLS system.

An example of method-level speculation is shown in Figure 1. When the
computeValue() method call is reached, the current thread (T1) begins executing
it, while at the same time triggering the spawn of the speculative execution (by
T2) of the code following the return of that method.

In this example, both the original parent thread and the speculative child
thread have to join to produce the result of the method. If the value of the
variable x was never used, it would be possible to speculate past the return of
example1(), and continue the execution of the method that invoked it. Alterna-
tively, even if x’s value is needed to proceed with the execution, we can employ
return value prediction to guess a probable value of x, as discussed in Section 4.5.

3 First-class Continuations on the JVM

First-class continuations allow an application to have control over its own control
flow: they allow the current program execution state to be saved, and later
resumed. Mapping it to the Java platform means having a way of saving a

4 Ivo Anjo and João Cachopo

thread’s call stack, local variables and program counter, and of later restoring
it. Unfortunately, the Java VM specification includes no facilities to allow this.

There have been multiple proposals for extending Java with continuations.
We can divide them into two big groups: bytecode-based [10, 13] and VM-
based [16, 19]. Bytecode-based approaches work by modifying application byte-
code to keep parallel representations of a thread’s state on the heap, and also by
modifying methods so that the entire call stack can be rebuilt from the parallel
representation. Although this approach is successful and works with any JVM, it
suffers from very large overheads, which unfortunately are always present, even
if the application never actually tries to capture or resume any continuation.

The other approach — VM-based continuations — works by modifying the
JVM, adding hooks that allow access to the VM’s internal representation of
threads. Usually, with such an implementation, there are no extra overheads
when continuations are not being used, but it is non-portable and VM-specific.

To support our framework, we looked into VM-based continuation imple-
mentations that worked atop the OpenJDK Hotspot JVM, as it is one of the
highest performing and most used production VMs. To obtain our continuation-
supporting VM, we extended the work by Hiroshi [19]: this implementation pro-
vided continuations aimed at web servers, where the state of a web interaction
was kept inside a continuation between each request/response pair from the same
client. This meant that when a continuation was created at the end of each web
interaction, the thread state that was saved would no longer be needed until the
next request from that client, so the continuation implementation would also,
during the capture operation, clear the existing state and reset the thread to a
clean state ready to serve the next client. It also meant that each continuation
could only be resumed at most once, as it was expected that at the end of each
interaction a new one would be created.

Our custom JVM extended this work by removing its restrictions: our im-
plementation allows the same continuation to be resumed multiple times, and
it is optimized so that capturing a continuation also preserves the state of the
thread, allowing execution to proceed immediately after a continuation is cap-
tured. While the latter could be simulated with added overhead, the support
for resuming a continuation multiple times is essential for JaSPEx-MLS’s use
of continuations, as explored in Section 4.2. Finally, several internal VM design
choices lead to native methods not being allowed in a call stack being captured,
and because Hotspot’s reflective invocation API is built using native code, we
developed our own VM-agnostic alternative reflective invocation system that re-
lies on runtime bytecode generation, allowing our framework to combine the use
of reflection and continuations.

4 Runtime Extensions to the JaSPEx-MLS Framework

In this section, we will start with a brief introduction of the JaSPEx-MLS frame-
work (Section 4.1) and how continuations are used to implement MLS (Sec-
tion 4.2). We then present our hybrid technique for safely allowing the buffering

Continuation-Powered Method-Level Speculation for JVM Applications 5

of speculative tasks, while still avoiding deadlocks (Section 4.3), followed by our
novel task freeze technique that enables thread reuse (Section 4.4). Finally, we
describe an extension to our STM model that adds support for STM-assisted
return value prediction (Section 4.5).

4.1 The JaSPEx-MLS Parallelization Framework

JaSPEx-MLS [1] is a software-based speculative parallelization framework em-
ploying Method-Level Speculation that provides both a Java classloader that
modifies application code as it is requested by the virtual machine, and a run-
time Java library that orchestrates speculative execution. The framework is im-
plemented in Java, and modifications to applications are done via bytecode
rewriting. It also depends on having a VM with continuation support, which
is provided by a modified version of the OpenJDK Hotspot VM (Section 3).

The JaSPEx-MLS classloader (introduced in more detail in [1]) is responsible
for, whenever a class is requested by the application, preparing its code for
speculative parallelization, consisting of four main steps: (1) transactification,
(2) dealing with non-transactional operations, (3) task spawn point injection,
and (4) modifications to support Futures.

The classloader first transactifies applications by modifying their code to use
our low-overhead software transactional memory, which is designed to be type-
specific and easily inlined by the VM. The transformation process then adds
hooks to deal with non-transactional operations, such as calls to native code
and to some JVM services: Whenever application code is running speculatively,
and a non-transactional operation is to be executed, we ensure the safety of the
operation by synchronizing with earlier (in the original program order) spec-
ulative tasks, aborting the current task if needed. In addition, there is limited
support for automatic transactification of JDK classes, and we have implemented
alternative transactionally-friendly versions of commonly used operations.

Our classloader decides where to insert speculative task spawn points by first
performing local analysis of a method’s control flow. We use this information to
avoid creating both overly small and too many tasks; optionally this process
can also be augmented by information from an automatic profiling pass. Each
selected spawn point corresponds to a normal method call, which is morphed into
a call to the JaSPEx-MLS runtime library that returns a Future as a replacement
for the original method’s return value. This future, similarly to the ones employed
in the Java Fork/Join framework, allows the speculative task to obtain the result
of its parent task’s computation, corresponding to the execution of the original
method call. As the original application being parallelized has no references to
futures, and Java bytecode is typed, our classloader needs to perform various
code modifications to adapt the original code to the use of futures.

After the prepared classes are loaded by the classloader into the VM, control
is transferred to the runtime orchestration library, which becomes responsible for
coordinating speculative tasks, and for parallelizing the application while still
respecting the original sequential program semantics — even in the presence of
non-transactional operations. The runtime library is also responsible for starting,

6 Ivo Anjo and João Cachopo

int example1() {
 int x = spawn computeValue();
 int y = 0;
 for (...) y += ...;
 return x+y;
}

for loop

Thread 2

return

computeValue()

spawn:
 capture continuation
 create & submit task to pool
 clean stack

validate task & write result

start STM transaction
resume continuation

example1()

Thread 1

Ti
m
e

sum

Futu
re

thread pool

thread pool

x.ge
t()

Fig. 2. Runtime view of Figure 1’s example1() task creation and execution.

maintaining, and validating the STM transactions that allow tasks to perform
speculative reads and writes to the program heap. Speculative work is submitted
to a thread pool, which we attempt to keep busy at all times, as described in
further detail in the following sections.

4.2 Mapping MLS to Continuations

As described in Section 2, under the MLS model, we change method calls into
speculation spawn points. For instance, in Figure 2, we transform the invoca-
tion of the computeValue() method into a spawn point for a new task that will
speculatively execute the code following the spawn instruction.

This is where the support for first-class continuations enters: JaSPEx-MLS
captures a continuation representing the current thread’s state — program counter,
local variables, method arguments, and all pending invocations in the stack —
and attaches it to the newly created speculative task. It then cleans the current
call stack, throwing it away, as it will not be needed after the method is com-
pleted, and proceeds to execute the computeValue() method. Note that doing
the inverse would also be possible: schedule the execution of computeValue() on
another thread, along with the current active task and transaction, and continue
executing the for loop in the current thread. The problem with this alternative
approach is that it can easily lead to delays in executing code earlier in the
program order, while devoting more resources to code that is more speculative.

Whenever a speculative task is picked up by a thread, it starts a new STM
transaction, and resumes the previously captured continuation. Execution jumps
to the spawn operation that replaced the computeValue() method, where a Future
is returned representing the return value for the method, and the (speculative)
execution begins.

Each continuation may be resumed up to two times: The first resume happens
when a task first executes speculatively, while the second may happen if, after
the first execution, validation of the STM transaction fails and the task is re-
executed.

4.3 Thread Pool Buffering

After a new speculative task is created, it is submitted for execution to the
JaSPEx-MLS thread pool, which is based on Java’s ThreadPoolExecutor API. In
our original design [1], the thread pool did not buffer tasks, instead allocating a

Continuation-Powered Method-Level Speculation for JVM Applications 7

limited number of threads based on the number of available CPUs, and accepted
new tasks only when there were idle threads. This design was chosen to avoid
possible deadlocks: Because our model allows tasks to be spawned in any order,
task spawning becomes unpredictable; when combined with the fact that tasks
may need to block while waiting for other tasks to finish their work, task buffering
becomes prone to deadlocking, as it is possible for all the available threads in
the thread pool to be blocked while waiting for results from a task that is still in
the queue waiting to be executed. By disallowing buffering, we guarantee that
at least one of the threads in the system is making progress, as it is hosting the
oldest task in the system — which will never need to wait.

As benchmarking revealed that task buffering, when it did not cause any
issues, was more efficient than direct hand-overs to the thread pool, we devel-
oped a hybrid technique that starts by using buffering, but augments it with
monitoring the thread pool for deadlocks, and allows fallback to the earlier task
hand-over scheme if needed. To detect deadlocks, a dedicated thread periodically
polls the state of the thread pool queue: As any given task is queued at most
once, if the same task sits at the head of the pool for some amount of time —
we expect most tasks to execute in sub-second times — we check the state of
all the threads. If all threads in the pool are in the waiting state, it means that
the system is probably deadlocked. As such, we fallback to the earlier scheme
without buffering, and temporarily create more threads to execute the remaining
buffered tasks. This approach combines the best of both task queuing modes: it
maintains correctness for all applications while providing increased performance
to those where buffering causes no issues.

Note that if, when a task is submitted, the pool is full, the spawn is aborted.
This happens in both pool queuing modes, either when the pool is fully busy, or
when the buffer is full.

4.4 Task Freeze

During speculative execution, a task may need to access the result from another
speculative task. If the other task has not yet finished its computation, the
current task must wait until the value becomes available. A similar case occurs
when a task is about to execute a non-transactional operation: the task needs to
wait until it becomes the oldest task in the system. In both cases, the threads
hosting the waiting tasks are still considered as busy, and are unavailable for
executing other tasks, thus leaving the machine’s parallel resources underused.

A possible approach to solve this issue would be thread reuse, which unfor-
tunately is not straightforward in our model: If a thread picks up a more recent
task for execution, and the new task ends up depending on the older task to
finish, the system becomes deadlocked — unable to ever finish the new task or
to switch back to executing the previous one.

To safely support thread reuse, we again rely on our extended JVM with
support for continuations. Whenever a thread executing a task would block
waiting for its parent task to finish, instead we freeze the task, by saving both
a continuation containing the current state of the task and the currently active

8 Ivo Anjo and João Cachopo

STM transaction. This frozen task is associated with its parent task, which will
be responsible for finishing the task’s work after its own. This allows the thread
previously hosting the task to be returned to the thread pool, where it can safely
proceed to work on other tasks, instead of blocking, as before.

The thaw operation happens when, after finishing its work, the parent task
discovers a frozen child task waiting to be finished. As the parent task is fin-
ished, the thread directly switches to working on the child task without needing
to return to the thread pool — the child’s continuation is resumed, its STM
transaction is validated, and execution proceeds from where the freeze left off.
Note that it is possible for a queue of frozen tasks to form, and a parent may
have to thaw several children, always directly switching between them without
returning to the thread pool.

Because capturing continuations adds some overhead, we have further iden-
tified and optimized a common use case where we can avoid the need for con-
tinuations. Whenever a child task is able to complete its work, but needs to
wait for its parent to finish before it can validate and commit its own specula-
tive state changes to the global program state — as it does not know if it read
something that will be later changed by one of its parent tasks — we can use a
simpler freeze. As the child task is finished with its work, there is no state on the
stack that needs preserving, and in this case the freeze operation consists only
in saving the STM transaction, avoiding an unneeded capture/resume cycle.

4.5 Return Value Prediction

One of the biggest challenges in the MLS model is dealing with operations that
work on the return values of methods that have yet to finish executing. Our
framework represents the return values of these methods with Futures, and our
modifications to the application code allow futures to be written both to local
variables and also to the heap, via special collaboration with our STM imple-
mentation. But the previous options are only useful if the value from the method
call is not read immediately. Otherwise, no useful work would be done in par-
allel: a speculative task spawned to run the code following a method call would
immediately stall waiting for the result from its parent task. In our previous
work, whenever the JaSPEx-MLS classloader detected that this would happen,
it declined to inject the spawn operation that would create a new task.

A possible solution to this issue lies with the use of Return Value Prediction
(RVP) [5, 12]. The idea of RVP is that whenever a task would stall waiting for
a returned value to be produced by another task, we guess a probable value for
the computation, and continue executing the task using this assumption — we
speculate on the returned value from a task.

We have implemented RVP in JaSPEx-MLS as a novel extension to our STM
model: Whenever a prediction is produced, we register it with our STM as a read
of a specially reserved memory location. This memory location is unique for each
task from which we obtain a prediction: It is possible for a speculative task to
obtain multiple predictions corresponding to values from multiple other tasks.
When a task finishes and produces the final return value, it writes it to the

Continuation-Powered Method-Level Speculation for JVM Applications 9

2 Cores 4 Cores
0%

10%

20%

30%

40%

50%

60%

series
crypt
lufact
euler

%
 I

m
p

ro
ve

m
en

t
Fig. 3. Improvement obtained by the new JaSPEx-MLS extensions, relative to bench-
mark executions using JaSPEx-MLS but with the new extensions disabled, for multiple
benchmarks from the JGF.

special memory location. When later the task that read the prediction attempts
to commit, the memory location hosting the prediction is checked as part of
read-set validation. If the prediction was correct, its value will be seen as valid
by the STM, otherwise the speculative task is aborted and re-executed.

We support multiple prediction strategies (as proposed in other works [5,12]),
and update predictors during transaction commit operations. As an option, when
RVP is being employed, the JaSPEx-MLS classloader can be configured to inject
code to spawn speculations even when the value is immediately consumed.

5 Experimental Results

In this Section, we present preliminary experimental results obtained with the
JaSPEx-MLS framework. We tested our prototype on an Intel Core i7 4770
computer with 16GB of RAM, running Ubuntu Linux 13.10 (snapshot) 64-bit,
with hyperthreading disabled, and our modified OpenJDK VM.

We tested several JVM benchmarks from the Java Grande Forum (JGF)
benchmark suite.1 The chosen benchmarks are single-threaded, and no modifi-
cations to their source code were made. We present results with two and four
processor cores enabled in the machine. To test with two cores, we locked the
VM process to only two cores of the quad-core machine.

We first characterize the performance of the new techniques proposed in this
work for the framework by comparing the benchmark execution performance to
a version of JaSPEx-MLS where their usage was disabled. The results of this
testing are presented in Figure 3. For the series benchmark, the new features
improved performance noticeably. Interestingly, freezing tasks only improved
performance when combined with the task buffering changes; combining freezing
with the simpler no-buffering pool actually regressed performance, showing that
task submission to the pool was indeed a bottleneck in our system. Both crypt
and lufact show modest gains with 4 cores. Finally, euler was not able to
improve from the new features, but it was also not negatively impacted either.
Not shown are the fft benchmark as it behaved similarly to crypt, and both sor
and sparsematmult because no useful spawn points where injected.

Figure 4 compares the actual speedup obtained in the series benchmark,
when compared to the original sequential version’s runtime, when running JaSPEx-

1 http://www.epcc.ed.ac.uk/research/java-grande

http://www.epcc.ed.ac.uk/research/java-grande

10 Ivo Anjo and João Cachopo

Spec. Disabled 2 Cores 4 Cores
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

JaSPEx-MLS + extensions
JaSPEx-MLS

Sp
ee

du
p

Fig. 4. Speedup of the series benchmark, when compared to the original sequential
version’s runtimes, both with the new extensions enabled and disabled.

MLS both with and without the new extensions. Compared to our previous
work [1], we see improved scaling in the series benchmark, hitting a speedup
of 3.03x with 4 cores. The remaining benchmarks were omitted, as even with
the new extensions they are not yet able to surpass the original version’s per-
formance, as they still need improvements to task selection and scheduling. For
all the benchmarks tested, the baseline execution with the code modifications
active but where no speculations are ever spawned reveals up to 3% overhead
when compared to the original unmodified versions, showing that the optimiza-
tions done by the virtual machine are able to almost nullify the added overheads,
making non-speculative code execution perform at production VM speeds, while
still ready for speculative execution and for capturing continuations.

6 Related Work

Because executing code transactionally can impose very large overheads, recent
TLS proposals, similarly to JaSPEx-MLS, try to optimize the transactification
and transactional model as much as possible: In SpLIP [8], a speculation system
that targets mostly-parallel loops, the authors propose avoiding performance
pitfalls present on other software TLS proposals by having speculations commit
their work in parallel, and using in-place updates. Fastpath [15] is also aimed at
extracting parallelism from loops using speculation. This system distinguishes
between the thread running in program order, and other speculative threads:
The lead thread always commits its work, and has minimal overhead, whereas
speculative threads suffer from higher overheads and may abort. The current
JaSPEx-MLS relaxed STM model is very similar to the Fastpath value-based
algorithm, the biggest differences being our support for futures and RVP.

Rountev et al. [14] studied the parallelism available on multiple Java sequen-
tial benchmarks, and propose that parallelization be broken into two steps: (1)
the modification of a sequential program into a sequential concurrently-friendly
program; and (2) the parallelization itself. They also introduce a new technique
to help identify parallelism-inhibiting memory accesses.

Hu et al. [5] studied the importance of return value prediction to MLS and
similar speculative schemes, showing that RVP could provide clear performance
advantages by simulating the execution of multiple benchmarks on a specially
modified Java VM. Pickett [12] also studied multiple predictors and proposed a
hybrid design that dynamically chooses the best predictors for a given call site.

Continuation-Powered Method-Level Speculation for JVM Applications 11

The idea of using futures in Java coupled with speculative execution was also
explored in a different context by Welc et al. [17]: In their work on safe futures
for Java, the authors extend Java with support for futures that are guaranteed
to respect serial execution semantics. In contrast with our automatic approach,
to use safe futures, programmers need to manually change their code to em-
ploy futures instead of normal method calls, including solving cases where the
return value from a method is consumed or written immediately. JCilk [4] is
a Java-based language for parallel programming that provides a programming
style very similar to Fork/Join. It extends Java with three new keywords, and in-
cludes very detailed and strict semantics for exception handling, aborting of side
computations, and other interactions between threads that try to minimize the
complexity of reasoning about them. Similarly to the safe futures, programmers
also need to manually prepare their program for execution using JCilk.

SableSpMT [11] is a Java MLS-based automatic parallelization framework.
Like JaSPEx-MLS, it performs RVP, but unlike our approach, a simpler task
spawn model is used: Although the main thread is allowed to spawn multiple
speculative tasks, the tasks themselves cannot spawn further speculative tasks
— nested speculation is not allowed. SableSpMT is based a modified SableVM
virtual machine, which unfortunately includes only an interpreter and a very
simple garbage collection algorithm. In contrast with SableSpMT, JaSPEx-MLS
fully supports nested speculation, and in our system the garbage collector works
normally, whereas in SableSpMT it invalidates all running speculations.

7 Conclusions and Future Work

In this paper, we have presented multiple novel techniques for improving MLS
runtimes. These techniques were developed as part of our ongoing work on the
creation of the JaSPEx-MLS software-based speculative parallelization frame-
work, which aims to parallelize irregular Java/JVM applications automatically.

We started by introducing our extensions to previous experimental work that
added first-class continuations to the OpenJDK Hotspot JVM — we removed
several restrictions and further optimized the implementation for our use-cases.
We analyzed the issues underlying both the safe buffering of speculative tasks
for execution, where we proposed an hybrid scheme with a dynamic deadlock
detector, and thread reuse via task freezing, allowing blocked threads to be freed
up for safely executing other tasks. We also described our STM-assisted return
value prediction support, which allows a task to continue execution by obtaining
(possibly multiple) predictions from other concurrently executing speculative
tasks that have not yet finished.

Evaluation of our techniques shows that they improve our MLS runtime,
allowing a decrease in overheads and enabling us to unlock further latent paral-
lelism, improving the speedup obtained in the tested benchmarks.

In the future, we intend to work on improving the runtime management of
tasks by adding a task scheduler, and also to improve our automatic profiling
pass so that unprofitable speculations are more aggressively culled.

12 Ivo Anjo and João Cachopo

References

1. Anjo, I., Cachopo, J.: A software-based method-level speculation framework for the
Java platform. In: Proceedings of the 25th International Conference on Languages
and Compilers for Parallel Computing (LCPC 2012). 205–219. Springer-Verlag
(2013)

2. Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence, T.:
Parallel programming with Polaris. Computer 29(12), 78–82 (1996)

3. Chen, M., Olukotun, K.: Exploiting method-level parallelism in single-threaded
Java programs. In: 7th International Conference on Parallel Architectures and
Compilation Techniques (PACT-1998). 176–184. IEEE (1998)

4. Danaher, J., Lee, I., Leiserson, C.: The jcilk language for multithreaded comput-
ing. In: OOPSLA 2005 Workshop on Synchronization and Concurrency in Object-
Oriented Languages (SCOOL) (2005)

5. Hu, S., Bhargava, R., et al.: The role of return value prediction in exploiting specu-
lative method-level parallelism. Journal of Instruction-Level Parallelism 5(1) (2003)

6. Lam, M., Wilson, R.: Limits of control flow on parallelism. ACM SIGARCH Com-
puter Architecture News 20(2), 46–57 (1992)

7. Lea, D.: A Java fork/join framework. In: Proceedings of the ACM 2000 conference
on Java Grande. 36–43. ACM (2000)

8. Oancea, C., Mycroft, A., Harris, T.: A lightweight in-place implementation for
software thread-level speculation. In: Proceedings of the 21st Annual Symposium
on Parallelism in Algorithms and Architectures (SPAA ’09). 223–232. ACM Press
(2009)

9. Oplinger, J., Heine, D., Lam, M.: In search of speculative thread-level parallelism.
In: 8th International Conference on Parallel Architectures and Compilation Tech-
niques (PACT-1999). 303–313. IEEE (1999)

10. Ortega-Ruiz, J., et al.: Continuation-based mobile agent migration (2010)
11. Pickett, C., Verbrugge, C.: Software thread level speculation for the Java language

and virtual machine environment. In: Proceedings of the 18th International Confer-
ence on Languages and Compilers for Parallel Computing (LCPC 2005). 304–318.
Springer-Verlag (2006)

12. Pickett, C., Verbrugge, C.: Return value prediction in a Java virtual machine. In:
Proceedings of the 2nd Value-Prediction and Value-Based Optimization Workshop
(VPW2). 40–47 (2004)

13. RIFE Team: RIFE : Web continuations (2006)
14. Rountev, A., Van Valkenburgh, K., Yan, D., Sadayappan, P.: Understanding

parallelism-inhibiting dependences in sequential Java programs. In: International
Conference on Software Maintenance (ICSM 2010). 1–9. IEEE (2010)

15. Spear, M., Kelsey, K., Bai, T., Dalessandro, L., et al.: Fastpath speculative paral-
lelization. In: Proceedings of the 22nd International Conference on Languages and
Compilers for Parallel Computing (LCPC 2009). 338–352. Springer-Verlag (2010)

16. Stadler, L., Wimmer, C., Würthinger, T., Mössenböck, H., Rose, J.: Lazy contin-
uations for Java virtual machines. In: 7th International Conference on Principles
and Practice of Programming in Java (PPPJ 2009). 143–152. ACM Press (2009)

17. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. ACM SIGPLAN
Notices 40(10), 439–453 (2005)

18. Whaley, J., Kozyrakis, C.: Heuristics for profile-driven method-level speculative
parallelization. In: Proceedings of the 2005 International Conference on Parallel
Processing (ICPP ’05). 147–156. IEEE Computer Society (2005)

19. Yamauchi, H.: Continuations in servers. In: JVM Language Summit 2010 (2010)

	Improving Continuation-Powered Method-Level Speculation for JVM Applications
	Introduction
	Method-Level Speculation
	First-class Continuations on the JVM
	Runtime Extensions to the JaSPEx-MLS Framework
	The JaSPEx-MLS Parallelization Framework
	Mapping MLS to Continuations
	Thread Pool Buffering
	Task Freeze
	Return Value Prediction

	Experimental Results
	Related Work
	Conclusions and Future Work

