
JaSPEx: Speculative Parallel Execution
of Java Applications?

Ivo Anjo and João Cachopo

ESW
INESC-ID Lisboa/Instituto Superior Técnico/Universidade Técnica de Lisboa

Rua Alves Redol 9, 1000-029 Lisboa, Portugal
{ivo.anjo,joao.cachopo}@ist.utl.pt

Abstract. Multicore processors, capable of running multiple hardware
threads concurrently, are becoming common on servers, desktops, lap-
tops, and even smaller systems. Unfortunately, most of the time these
new machines are underutilized, as most current software is not written
to take advantage of multiple processors. Also, with these new machines,
more cores do not translate into more sequential performance, and exist-
ing sequential applications will not speed up by moving to a multicore.
To tackle this problem, we propose to use thread-level speculation based
on a Software Transactional Memory to parallelize automatically sequen-
tial programs. We describe the JaSPEx system, which is able to do auto-
matic parallelization of existing sequential programs that execute on the
Java Virtual Machine, and we address the problem of transactifying an
existing program and the difficulties inherent to this process. Besides the
transactification process, we describe how speculation is introduced and
controlled by the JaSPEx system, and what is the relationship between
the speculative execution of a program and the Software Transactional
Memory that it is using.

Key words: Thread-level Speculation, Transactional Memory, Legacy
Applications, Multicore Architectures

1 Introduction

The transition to multicore architectures is ongoing. Chip designers are no longer
racing to design the fastest uniprocessor, instead turning to parallel architec-
tures, capable of running many threads simultaneously.

The full power of these multicore chips is unlocked only when all cores are
busy executing code. Yet, most desktop applications fail to take advantage of
these processors, having little, if any, parallelism. This means that upgrading to
a newer processor with more processing cores does not benefit these applications.

Moreover, even if newly developed applications are written with multicore
architectures in mind, most of the already developed code is still sequential and
? This work was partially supported by the Pastramy project

(PTDC/EIA/72405/2006).

it is not feasible to rewrite it within a reasonable time frame. Thus, an enticing
alternative is to parallelize applications automatically. In fact, there is already
significant research towards this goal.

For instance, parallelizing compilers [1,2] try to automatically extract con-
currency from a sequential program description, while still maintaining program
correctness. The problem is that they still fail to parallelize many applications,
because of data and interprocedural dependencies that are very hard to analyze
at compile-time in a fully static way.

This work explores a different approach – speculative parallelization. Rather
than parallelizing only code that is provably able to run in parallel, speculative
parallelization uses a more aggressive approach that parallelizes code that may
have dependencies, and relies on the ability to roll back a speculative execution
when it detects that the parallelization could not have been done.

Unlike other approaches to automatic parallelization that rely on hardware-
supported speculative execution (e.g., [3,4,5]), the distinguishing feature of our
proposal is the use of a software transactional memory (STM) [6,7] to back
up the speculative execution. To the best of our knowledge, we are the first to
propose the use of an STM for speculative parallelization.

We argue that using an STM for speculative execution has several advantages
over hardware-supported approaches. First, because STM-based executions are
unbounded, we may extend the range of possible speculative parallelizations,
thereby increasing the potential for extracting parallelism from sequential ap-
plications. Second, we may apply these techniques to applications that run on
hardware that does not support speculative execution (including all of the cur-
rent mainstream hardware). Finally, we may leverage on much of the intense
research being done in the area of transactional memory.

Yet, switching from hardware-supported speculation to an STM-based ap-
proach, introduces other challenges, such as being able to transactify a program
to run it speculatively. In this paper, we describe JaSPEx – the Java Specula-
tive Parallel Executor – a system that automatically parallelizes programs for
the Java Virtual Machine (JVM) using an STM-based speculative approach.
JaSPEx rewrites the bytecode as it is loaded by the JVM runtime, modifying it
to run speculatively on top of an STM.

The remainder of this work is organized as follows. Section 2 introduces prob-
lems and solutions found for running code speculatively, and further describes
the implementation of JaSPEx. Section 3 presents experimental results. Sec-
tion 4 presents important research related to this work, and, finally, Section 5
summarizes the current findings and future work.

2 Design and implementation

We may parallelize the execution of a Java method like the one shown in Figure 1
by executing the calls to doA and doB in parallel. The problem is, these methods
might modify and access some shared state, and as such may not be able to run
in parallel.

void method() {

doA();

doB();

}

Fig. 1. Example method to be parallelized.

Using a speculative approach to the parallelization of programs entails having
the ability to detect when a speculative execution violates sequential execution
semantics, and the ability to reverse the changes done by a speculative execution
when such a violation occurs.

JaSPEx consists of two main elements: (1) a static modification module that
acts as a Java class loader, transforming and preparing classes as they are re-
quested by the application; and (2) a runtime control module that performs the
speculative executions, coordinating the start, end, termination and return of
values from these executions.

The static modification module applies the transformations at load-time, via
Java bytecode rewriting, using the ASM bytecode manipulation framework [8].
Sections 2.1, 2.2, and 2.3 describe these transformations. But, because looking
into the transformations made at the bytecode level is harder, in this paper
we present the transformations as semantically equivalent changes at the Java
programming language level.

The runtime control module relies on the changes made by the static modifi-
cation module, and is responsible for all runtime decisions and control regarding
speculation. It is described in Section 2.4.

2.1 Transactification of an application

Because the JVM runtime has no support for transactional execution of code, an
application must first be modified to run transactionally, so that the automatic
parallelization system is able to detect when a speculative execution violates
sequential execution semantics, and is able to reverse the changes made by a
speculative execution when such a violation occurs.

To solve this problem, we propose the use of a software transactional mem-
ory [6,7] to allow (parts of) the program memory to act transactionally. Execu-
tion of different parts of the application is then mapped to different transactions
each executing on their own thread, and when there is a conflict between two
transactions we know that there has been a violation of sequential execution se-
mantics, and abort the one that comes later in the original program execution.

Coming back to the example in Figure 1, we can parallelize execution of
method by running doA and doB in separate threads, each with a different trans-
action. If the STM system detects a conflict between the speculative execution of
doA and doB, we abort doB, and schedule it for reexecution, because the original
program order puts doA before doB; if no conflict is detected, the two meth-

ods are run in parallel, and this should result in a speedup over the sequential
version.

The software transactional memory currently used for JaSPEx is the Java
Versioned Software Transactional Memory (JVSTM) [9,10], which is a pure Java
STM that introduces the concept of versioned boxes, which are containers that
keep the history of the values of an object, each of these corresponding to a
change made to the box by a committed transaction. The JVSTM was chosen
for its features and due to our familiarity with it, but our approach can also be
used with other STMs.

As a Java library, applications have to explicitly call the JVSTM to start
and end transactions, and Java classes have to be modified to hold jvstm.VBox
instances, instead of instances of the original object types, as shown in Figures 2
and 3. This process, which we call transactification of a class, has to be applied
to all classes of a target application, so that it runs entirely under the control of
the JVSTM.

public class A {

private String s;

public A(String s) { this.s = s; }

public String s() { return s; }

}

Fig. 2. Original A class.

public class A {

private VBox<String> $box_s = new VBox<String>();

public A(String s) { $box_s_put(s); }

public String s() { return $box_s_get(); }

private String $box_s_get() { return $box_s.get(); }

private void $box_s_put(String s) { $box_s.put(s); }

}

Fig. 3. Transactified A class.

The transactification process does the following:

– Replaces the original fields of each class with private VBox<OriginalType>
fields named $box FieldName.

– Creates the get and put methods, $box FieldName get and $box FieldName put,
which mediate access to the corresponding VBox. These methods have the
same access level as the original field.

– Adds VBox slot initializations to the class constructors.
– Replaces accesses to the original fields, either from the same class or from

outside classes, with calls to the get and put methods.

Unfortunately, not all things can be transactified. For instance, native meth-
ods cannot be analyzed or modified easily. Also, the Sun JVM reserves the
java.* package namespace and does not allow loading at runtime modified ver-
sions of classes within this package or any of its subpackages. We refer to a class
that cannot or should not be modified as an unmodifiable class.1

Besides these unmodifiable classes, there are other features of the Java lan-
guage and runtime that make the transactification process harder. Arrays cause
a multitude of problems. Not only because individual array positions have to
be transactified, but specially because transactifying them causes changes to
the API of transactified classes, as arrays of a given OriginalType have to be
replaced by arrays of VBox<OriginalType>.2 This means that all method sig-
natures receiving or returning arrays have to be changed to accommodate this
change, which, as we stated before, is not possible on the Sun JVM. Another
source of problems is the use of reflection, because it eludes the static transforma-
tion of accesses to fields. So, reflection has to be forbidden during speculation, or
else modified to be speculation aware. Finally, I/O operations generally cannot
be undone.

Because not all things can be transactified, our system must be able to detect
all of these cases and make sure such invocations are forbidden during speculative
execution.

2.2 Prevention of nontransactional operations

There are two main approaches to prevent the execution of nontransactional
operations within a speculative execution: (1) static identification of these oper-
ations; and (2) dynamic, runtime prevention of their execution. Static identifi-
cation consists of building a graph of possible method invocations: If method A
may call native method B, then both A and B are marked as nontransactional.
Note that, even though there may be a control flow from A to B, it does not mean
that A calls B each time it executes. So, as this approach is very conservative,
we opted for a dynamic runtime scheme, where methods are modified to invoke
the speculation system to check if they can perform nontransactional operations.
This way, we can take advantage of the fact that A might not invoke B very often,
and delegate the decision of whether to speculate the execution of A for runtime.

JaSPEx supports two modes of code execution: (1) transactified execution,
where code is run transactionally but no speculation occurs; and (2) a speculative
execution mode, where code runs both transactionally and speculatively.
1 Including should not in this definition is useful because there are other classes that

we do not want to modify, such as the jvstm libraries, and parts of the JaSPEx
framework.

2 This change can cause further problems, because generics in Java are implemented
using type erasure [11].

To support speculative execution, JaSPEx creates a speculative version of
each method M, called M$speculative, except for constructors, which always
have to be named <init>. In this latter case, an alternative scheme is used:
A new parameter of type SpeculativeCtorMarker is added at the end of ev-
ery speculative constructor. The speculative version of each method is a copy
of the original method with invocations to other methods replaced by calls to
their $speculative versions, if possible; for nontransactional method invoca-
tions, nontransactional field accesses,3 and operations involving arrays, it adds
an invocation to the JaSPEx runtime before performing the operation, so that
the speculation system can decide how to proceed.

Additionally, if the original method was native, its $speculative counterpart
consists of a call to the JaSPEx runtime, followed by a call to the original version.
Similarly, because a class may inherit methods from an unmodifiable class, it
needs to add $speculative versions of inherited methods that call the runtime
and then the original method on the superclass.

Figures 4 and 5 exemplify the application of some of these changes.

public class B {

public B() {

System.out.println(toString());

}

public String toString() { ... }

}

Fig. 4. Transactified B class.

public class B {

public B() { ... } // Same as original

public String toString() { ... } // Same as original

public B(SpeculativeCtorMarker marker) {

SpeculationControl.nonTransactionalActionAttempted(...);

System.out.println(toString$speculative());

}

public String toString$speculative() { ... }

}

Fig. 5. B class after introduction of $speculative versions of methods.
java.lang.System is an unmodifiable class, so access to its field out is con-
sidered a nontransactional action, as is the invocation of println on the
java.io.PrintStream it contains.

3 We consider accesses to unmodifiable classes to be nontransactional, including their
fields.

2.3 Doing speculation

After the transactification and the addition of support for handling nontrans-
actional operations, a final round of modifications for speculation is introduced.
These allow the speculation system to know when it can spawn a speculative
execution, and when the speculation results should be applied or discarded.

Currently, JaSPEx speculates only on method executions: When a method
is invoked, some of the methods it invokes may be run speculatively. Specu-
lation is only considered for methods in which their arguments can either be
determined statically or are simple dynamic cases like arithmetic operations or
parent method argument accesses. Note that method invocations inside loops
are speculated at most once; further invocations are executed normally in the
thread of the caller (but may still spawn speculations of their own). As an ex-
ample, consider a recursive implementation of the Fibonacci function shown in
Figure 6.

At each call to fib, JaSPEx speculatively launches the execution of fib(n-1)
and fib(n-2) and then proceeds with the execution of the method: In the case
where n ≤ 1, the speculative executions that may be running are discarded;
otherwise, their results are retrieved and the transactions that they are running
in are committed, if possible.

Speculative methods call the JaSPEx runtime when they are started, be-
fore they terminate, and to get results from speculative executions. When a
method starts, it calls the method SpeculationControl.entryPointReached,
passing as arguments an entry-point id that uniquely identifies each speculative
method, and an array of arrays with the arguments for each function call that
is to be executed speculatively within that method. For instance, in the fib
example, we will execute speculatively this.fib(n-1) and this.fib(n-2).4

Thus, entryPointReached will receive an array arr of type Object[2][], where
arr[0] contains the arguments this and n-1, and arr[1] contains this and
n-2. As a result of the call to entryPointReached, an instance of SpeculationId
is returned, which identifies the current dynamic execution context uniquely.

Before a method exits, a call to SpeculationControl.exitPointReached is
made, to inform the runtime that the method will terminate, and that speculative
executions that might be queued or running for this method should be discarded.
The current form in which the call to exitPointReached is injected does not
yet take into account exceptions; support for this is considered future work.
4 Because fib is not a static function, each recursive call also implicitly includes as

an argument the current object instance, this.

public int fib(int n) {

if (n <= 1) return n;

return fib(n-1) + fib(n-2);

}

Fig. 6. Fibonacci function.

public int fib$speculative(int n) {

SpeculationId specId =

SpeculationControl.entryPointReached(ENTRY_POINT_ID,

new Object[] { new Object[] { this, n-1 },

new Object[] { this, n-2 } });

if (n <= 1) {

SpeculationControl.exitPointReached(specId);

return n;

}

Future f0 = SpeculationControl.getResult(specId, INV_ID_0);

Future f1 = SpeculationControl.getResult(specId, INV_ID_1);

int temp = f0.get() + f1.get();

SpeculationControl.exitPointReached(specId);

return temp;

}

Fig. 7. The speculative version of the Fibonacci function. The symbols INV ID *
identify the function calls that they replace: In this case, INV ID 0 represents
the call to fib(n-1), whereas INV ID 1 represents the call to fib(n-2).

Method invocations for methods that are executed speculatively are replaced
by calls to SpeculationControl.getResult, which, given the current Spec-
ulationId and an identifier that identifies the function call, returns a Future
object that represents the result of the speculative execution. Finally, to obtain
the result, get() is called on the Future; if the underlying method execution
resulted in an exception being thrown (an instance of java.lang.Throwable or
any of its subclasses), that exception will be rethrown by get().

Figure 7 shows the fib$speculative method with these modifications.

2.4 Runtime control

As seen in the previous sections, calls to methods of the class SpeculationCon-
trol are added at various points of the speculative methods, allowing control
of speculation start and end, decision on how to proceed when nontransactional
actions need to be executed, and fetching of results from speculative executions.

A speculation starts with a call to SpeculationControl.entryPointReached
which, as seen before, receives an entry-point id and an object array containing
arguments to be used for speculative calls. The entry-point id is used to access a
list of instances of java.lang.reflect.Method, each of which corresponds to a
method that is going to be executed speculatively.5 JaSPEx generates a new task
for each element in this list: Each task will compute a call to the correspond-
ing method with the appropriate arguments. For instance, for the execution of
fib(n), two smaller tasks are generated, representing the calls to fib(n-1) and
fib(n-2). These tasks are queued for execution by worker threads.

5 This list is only generated the first time that a speculative method is executed.

When a worker thread picks up a task, it starts a new STM transaction
and uses reflection to invoke the method with the supplied arguments. Because
the method executes within an STM transaction, none of its changes are visible
to the outside until the transaction commits. Moreover, if, during the method
execution, it tries to execute a nontransactional action, it stops and waits for
permission to commit its current STM transaction – it waits until it can run
on normal, sequential program order, so that it cannot be aborted. If, instead,
the method terminates with a return value or an exception, it also waits for
permission to be committed. Finally, as a method running speculatively may
also cause other speculative execution tasks to be created, when a method wants
to give permission to commit to a method speculation that it started, it also has
to wait for permission to commit its own transaction first.

Permission for a speculative task to commit is given only when the method
get is called on the Future representing the task (itself a result from a call
to the method SpeculationControl.getResult) and that call is made by the
thread currently running in the normal program order. This scheme results in
speculative transactions being committed in original, sequential program order,
as expected. If a conflict is detected when trying to commit a transaction, the
task is aborted and reexecuted; this time, it will commit for sure, because it is
executing in the original program order.

3 Experimental results

We now present some preliminary results of the automatic parallelization per-
formed by JaSPEx. These results were obtained on a dual-quadcore system with
two Intel Nehalem-based Xeon E5520 processors, running Ubuntu Linux 9.04,
and Java SE version 1.6.0 13.

As fib does very little computation at each step, we have modified it to do
speculative execution only up to a threshold, and from then on to run the rest
of the computation entirely without speculative execution on the same thread.
Figure 3 presents the time needed for calculating fib(50) using this version
with 1 to 8 cores.

These are very preliminary results, but they are encouraging, showing that
it is possible to automatically extract parallelism from a sequential program
with the approach that we propose. Still, we believe that further optimizations,
specially to the way threads are spawned and terminated, will provide better
results.

4 Related work

Transactional Memory was initially proposed by Herlihy and Moss [12] as a
multiprocessor architecture capable of making lock-free synchronization as ef-
ficient and easy to use as conventional techniques based on mutual exclusion.
The implementation was based on extensions to multiprocessor cache-coherence

Sheet1

Page 1

1 2 4 8

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

Active Cores

T
im

e
(m

s)

Fig. 8. Time for calculating fib(50) using speculative parallelization, as we
increase the number of available cores.

protocols, addition of some new instructions to the processor, and a small trans-
actional cache where transactional changes were kept prior to committing.

Software transactional memory was later introduced as an alternative to
hardware transactional memory [6] that could be implemented using Load-
Linked/Store-Conditional of a single memory word, as provided by most current
hardware architectures. The Dynamic Software Transactional Memory (DSTM) [7]
was the first unbounded STM, allowing it to be used in the implementation of
dynamically-sized data structures such as lists and trees.

Many hardware-supported thread-level speculation (TLS) systems have been
proposed by researchers. POSH [3] presents a TLS infrastructure on top of the
GNU Compiler Collection (GCC), composed of a compiler and a profiler; it
parallelizes applications by analyzing the source code and using heuristics to
identify tasks, which can be further refined by using the profiler. In [4], the
authors present a reverse compilation framework that translates binary code to
static single assignment (SSA) form, from there performing optimizations and
adding support for speculative execution. Jrpm [5], the Java runtime parallelizing
machine is a Java virtual machine that does TLS on a multiprocessor with
hardware support. It analyses buffer requirements and inter-thread dependencies
at runtime to identify loops to parallelize. Once sufficient data is collected, the
selected loops are dynamically recompiled. As Jrpm works at the Java bytecode
level, no changes need to be made to the source binaries or code.

The primary difference between these systems and JaSPEx is our use of
a software-based TM. Because a software-based TM has no inherent limits to
transaction duration and size, we expect to be able to extract more parallelism
from an application, parallelism that is available only at a higher level of the
application.

The Java Fork/Join Framework [13] is a framework due for inclusion on the
upcoming Java 7 that supports a style of parallel programming where problems
are solved by recursively splitting them into subtasks, which can then be exe-

cuted in parallel. JCilk [14] is a Java-based language for parallel programming
that supports a similar fork/join idiom, but includes very strict semantics for ex-
ception handling, aborting of side computations, and other interactions between
threads that try to minimize the complexity of reasoning about them. Welc et
al. [15] introduce safe futures for Java, which are futures that work as semanti-
cally transparent annotations on methods, where execution of a method can be
replaced for execution of a future, but where sequential execution semantics are
respected, and observed behavior of serial and concurrent tasks are the same;
the implementation includes features very similar to those provided by STMs.

Our current implementation is very similar to the fork/join style of program-
ming: Speculative tasks are created at the beginning of $speculative methods,
and the joins are done at the original method call sites. Unlike other fork/join-
style frameworks [13,14], though, where algorithms need to be explicitly mod-
ified to use fork/join calls, our framework tries to do a similar conversion au-
tomatically, including detection of conflicts between multiple tasks, which these
frameworks also leave up to the programmer. The work of Welc et al. [15] is also
similar to ours, because it allows multiple parts of the code to run speculatively
in parallel, and includes STM-like support for aborting speculative executions
if conflicts are detected. Unlike ours, however, the program needs to be manu-
ally modified to use the safe futures, and depends on their modified JVM for
execution.

5 Conclusions and future work

In this paper we proposed to use an STM-based approach to thread-level specula-
tion, so that we may extract more parallelism from sequential programs, benefit
from the results of the transactional memory research community, and target
current hardware.

We have incorporated our proposal into a running system – JaSPEx – that
automatically parallelizes a program that was compiled to run in the Java Vir-
tual Machine. To accomplish that, JaSPEx transforms the program, without the
intervention of the programmer, so that some parts of it may execute specu-
latively. One of the challenges in this transformation is the transactification of
the program. In this work we describe some of the difficulties inherent to the
transactification of a JVM program if we have no support from the JVM run-
time. Because of those difficulties, the transactification performed by JaSPEx
is currently limited, but we intend to address that problem in the future by
supporting the transactification at the JVM-runtime level.

In its current state, JaSPEx shows promising results – obtaining linear speedup
on a recursive implementation of the fibonacci function – even though it has not
been tested on realistic benchmarks, yet. Nevertheless, in the future we hope
to obtain further speedups by reducing overheads in task creation, commit, and
abort; by implementing a more dynamic system that gathers statistics on spec-
ulation duration and success rates, with the objective of avoiding method spec-
ulations for very small methods and for methods with high abort rates; and by

further optimization of the JVSTM for our use-case, thereby reducing overheads
in transactional execution of applications.

References

1. Blume, B., Eigenmann, R., Faigin, K., Grout, J., Hoeflinger, J., Padua, D., Pe-
tersen, P., Pottenger, B., Rauchwerger, L., Tu, P., et al.: Polaris: The Next Gen-
eration in Parallelizing Compilers. In: Proceedings of the Seventh Workshop on
Languages and Compilers for Parallel Computing. (1994)

2. Wilson, R.P., French, R.S., Wilson, C.S., Amarasinghe, S.P., Anderson, J.M.,
Tjiang, S.W.K., Liao, S.W., Tseng, C.W., Hall, M.W., Lam, M.S., Hennessy, J.L.:
Suif: an infrastructure for research on parallelizing and optimizing compilers. SIG-
PLAN Not. 29(12) (1994) 31–37

3. Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J., Torrellas, J.: POSH:
a TLS compiler that exploits program structure. In: PPoPP ’06: Proceedings of
the eleventh ACM SIGPLAN symposium on Principles and practice of parallel
programming, New York, NY, USA, ACM (2006) 158–167

4. Yang, X., Zheng, Q., Chen, G., Yao, Z.: Reverse compilation for speculative parallel
threading. Parallel and Distributed Computing Applications and Technologies,
International Conference on 0 (2006) 138–143

5. Chen, M., Olukotun, K.: The Jrpm system for dynamically parallelizing Java pro-
grams. In: Proceedings of the 30th annual international symposium on Computer
architecture, ACM New York, NY, USA (2003) 434–446

6. Shavit, N., Touitou, D.: Software transactional memory. Distributed Computing
10(2) (1997) 99–116

7. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.: Software transactional
memory for dynamic-sized data structures. In: Proceedings of the twenty-second
annual symposium on Principles of distributed computing, ACM Press New York,
NY, USA (2003) 92–101

8. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: a code manipulation tool to imple-
ment adaptable systems. Adaptable and extensible component systems (2002)

9. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions.
Science of Computer Programming 63(2) (2006) 172–185

10. Cachopo, J.: Development of Rich Domain Models with Atomic Actions. PhD
thesis, Technical University of Lisbon (September 2007)

11. Bracha, G.: Generics in the Java programming language. Sun Microsystems, java.
sun. com (2004)

12. Herlihy, M., Moss, J.: Transactional memory: architectural support for lock-free
data structures. In: Proceedings of the 20th annual international symposium on
Computer architecture, ACM New York, NY, USA (1993) 289–300

13. Lea, D.: A Java fork/join framework. In: Proceedings of the ACM 2000 conference
on Java Grande, ACM New York, NY, USA (2000) 36–43

14. Danaher, J., Lee, I., Leiserson, C.: The JCilk language for multithreaded com-
puting. In: OOPSLA 2005 Workshop on Synchronization and Concurrency in
Object-Oriented Languages (SCOOL). (2005)

15. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: Proceedings
of the 20th annual ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications, ACM New York, NY, USA (2005) 439–453

	Introduction
	Design and implementation
	Transactification of an application
	Prevention of nontransactional operations
	Doing speculation
	Runtime control

	Experimental results
	Related work
	Conclusions and future work

