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Abstract. With multicore processors becoming ubiquitous on comput-
ing devices, the need for both parallelizing existing sequential applica-
tions and designing new parallel applications is greatly intensified. With
our work, we intend to tackle the former issue.
In this paper, we present the design of a software-based automatic par-
allelization framework for sequential applications that run on the Java
platform: the JaSPEx-MLS framework.
Our framework employs Method-Level Speculation: It uses method in-
vocations as fork points and converts those invocations to return futures
that can be stored in local variables in place of the original values. The
support for speculative execution is provided by automatically modifying
application bytecode to use a custom lightweight Software Transactional
Memory (STM), and we present a novel approach to integrate futures
representing speculative executions with the STM. Thread state transfer
is done by employing a Java Virtual Machine that provides support for
first-class continuations.
We present preliminary results from our implementation of the proposed
techniques on the JaSPEx-MLS framework, which works on top of the
OpenJDK Hotspot VM.

Keywords: Automatic Parallelization, Method Level-Speculation, Soft-
ware Transactional Memory, Continuations, OpenJDK Hotspot JVM

1 Introduction

With the move to multicore processors, many new applications are being de-
veloped with concurrent architectures in mind. Yet, many existing applications
are still sequential, and fail to take advantage of the full computing potential
promised by the multicore age.

Unfortunately, it is not feasible for a vast majority of sequential applications
to be rewritten to work in parallel within a reasonable time frame. Thus, an
enticing option is to use an automatic approach to parallelization.
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DAC Program funds and by the RuLAM project (PTDC/EIA-EIA/108240/2008).
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Parallelizing compilers [4,19] are one such approach that attempts to extract
concurrency from sequential programs automatically by proving that parts of an
application can be safely executed in parallel. The problem is that they fail to
parallelize many irregular applications [8,9,12] that employ dynamic data struc-
tures, loops with complex dependences and control flows, and polymorphism,
which are very hard or even impossible to analyze in a fully static way.

Thread-level speculation (TLS) systems [5,10,11,13,15,21] attempt to work
around this issue by optimistically running parts of the application in parallel,
even if the TLS system is not able to prove statically that there will be no depen-
dences. Instead, correctness is dynamically ensured at runtime, during or after
execution of the parallel tasks. Incorrect operations and memory changes are
prevented by buffering and tracking the execution of such operations, followed
by validation before they are propagated to the global program state.

There are multiple ways of identifying tasks from a sequential application to
be executed in parallel. Most TLS proposals concentrate only on loops [5,10,11,
15], whereas on our system we chose to use method calls as spawning points, as
proposed by [6,12,13,18].

In this paper, we present the design of our method-based speculation system,
which was implemented on top of the JaSPEx [1, 2] speculative parallelization
framework. Our system needs no special hardware extensions, instead relying on
Software Transactional Memory (STM) for transactional support, and it works
on top of a modified version of the OpenJDK Hotspot Java Virtual Machine
(JVM), allowing it to benefit from a state-of-the-art, production-level managed
runtime with dynamic optimization, garbage collection, and support for Java 6.

The rest of this paper is organized as follows. Section 2 introduces the
Method-Level Speculation technique, and Section 3 introduces the JaSPEx-MLS
parallelization framework. The static modifications done by the JaSPEx-MLS
classloader are described in Section 4, whereas in Section 5 we detail the runtime
creation and coordination of speculative tasks. Section 6 presents preliminary ex-
perimental results for our system. Section 7 discusses the related work, and we
finish in Section 8 by presenting conclusions and future research directions.

2 Method-Level Speculation

Method-level speculation (MLS) is a speculative parallelization strategy first
discussed in the context of Java by [6], and shown to be a promising source for
parallelism by [12, 13, 18]. This technique works by speculatively executing the
code that follows the return of a method call — its continuation — in parallel
with the method call itself.

An example of method-level speculation is shown in Figure 1. When the
computeValue() method call is reached, the current thread (T1) begins executing
it, while at the same time triggering the speculative execution (by T2) of the
code following the return of that method.

In this example, both the original parent thread and the speculative child
thread have to join to produce the result of the method. If the value of the
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int example1() {
    int x = computeValue();
    int y = 0;
    for (...) y += ...;
    return x+y;
}

Fig. 1. Execution of example1() method when run normally (center) and parallelized
with MLS (right).

variable x was never used, it would be possible to speculate past the return of
example1(), and continue execution of the method that invoked it.

Alternatively, even if x’s value is needed to proceed with the execution, we
can employ return value prediction [7, 14] to guess a probable value of x, and
continue speculation using this assumption.

3 The JaSPEx-MLS Parallelization Framework

JaSPEx-MLS is a fully software-based speculative parallelization framework that
provides both a Java classloader that modifies application code as it is requested
by the virtual machine, and a runtime Java library that orchestrates speculative
execution. It is based on the JaSPEx framework [1,2], but with both an entirely
new MLS-based speculation model, and a new transactional backend.

The JaSPEx-MLS classloader (Section 4) is responsible for preparing appli-
cation code for speculative parallelization. This includes transactifying the code,
adding hooks to allow the framework to correctly handle non-transactional op-
erations, and inserting into the application the spawn points that will be used
at runtime to create speculative tasks.

The runtime orchestration library (Section 5) is responsible for controlling the
creation of speculative tasks, establishing the commit order for the underlying
transactional system, deciding when to validate and to commit speculative tasks,
correctly handling aborting and retrying, and controlling the execution of non-
transactional operations. Speculative work is submitted to a thread pool, which
we attempt to keep busy at all times. Nested speculation is supported.

Almost all of JaSPEx-MLS is implemented in Java, and modifications to
applications are done via bytecode rewriting.1 The lone exception to this is that
JaSPEx-MLS relies on having first-class continuation support, which is provided
by a modified version of the OpenJDK virtual machine.

The OpenJDK VM is the result of the open-sourcing of Oracle’s Java technol-
ogy, including the Hotspot JVM. By working on top of OpenJDK, JaSPEx-MLS
has access to all the features and optimizations of a modern production JVM:
just-in-time compilation and adaptive optimization, state-of-the-art garbage col-
lection algorithms, support for Java 6 and optimized concurrency primitives.

We believe that the combination of software-only speculation on top of a
modern production JVM sets our system apart from previous work: Our ap-

1 To simplify presentation, the examples in this paper instead appear in Java.



proach can work on commonly available modern hardware, and on top of the
same codebase regularly used to run the sequential versions of the applications
that we are targeting.

Our first-class continuation implementation is based on previous work by
Yamauchi [20], which itself was based on the work of Stadler et al. [16]. We
have developed a library that currently includes backends for two different JVM
implementations of first-class continuations, and that will allow JaSPEx-MLS to
easily adapt to future developments in this area.

4 JaSPEx-MLS Classloader: Static Code Preparation

As introduced in Section 3, the JaSPEx-MLS classloader handles the static
preparation of classes for speculative parallelism. An important assumption that
we make is that any class that is prepared and loaded by this classloader is fully
safe to invoke with transactional semantics. The modifications described in the
following subsections allow a class to fulfill this assumption.

4.1 Transactification

The first part of static application processing is concerned with allowing appli-
cation code to run with transactional semantics. This allows JaSPEx-MLS to
control memory read and write operations during speculative execution, to have
a means of validating them, and to decide if they should be kept or not.

Rather than modifying the virtual machine to obtain this transactional sup-
port, we intercept any Java bytecodes that may access and mutate heap-allocated
memory locations—that is, accesses to object slots and to array elements.

As such, an application is modified to use an STM-like API whenever it must
read or write to slots and arrays.2 This API is very lightweight, type-specific,
and static, allowing the JVM to easily inline it into hot paths of the code.

4.2 Handling Non-Transactional Operations

In any transactional system, there are always some operations that cannot be
made to behave transactionally, as they are outside the control of the system.

For JaSPEx-MLS, and in the JVM platform, we consider as non-transactional
two types of operations: (1) native methods, which are implemented with pre-
compiled binary code, making them hard to analyze and transactify; and (2)
code belonging to the JDK (any classes in the java.* package namespace).

Code belonging to the JDK is considered to be non-transactional because the
OpenJDK JVM, like Oracle’s JVM, does not allow alternative versions of JDK
classes to be loaded at runtime. To reduce the number of non-transactional oper-
ations resulting from this limitation, we use a semi-manually–compiled whitelist
that includes immutable classes and methods that do not change any state, and

2 An exception is the access to final fields, which do not change after initialization.



java.util.List l = ...;
if (!(l instanceof Transactional)) nonTransactionalActionAttempted();
l.clear();

Listing 1.1. Runtime check for Transactional instances.

that do not access state from non-transactional classes nor arrays. Yet, in the
future, we intend to explore either the feasibility of modifying the VM to remove
this restriction, or a more limited offline modification of these base classes before
they are loaded.

To protect an application from executing a non-transactional operation while
performing speculative execution, we prepend any such operation with a call to
the framework method nonTransactionalActionAttempted(), which validates the
current speculation, waiting if needed, before allowing the operation to proceed,
or aborts the execution if the speculation is not valid.

In addition, as it is not always possible to distinguish statically when, for
instance, a reference l of type java.util.List refers to a user-provided MyList or
a non-transactional java.util.ArrayList, a runtime test is added. This runtime
test relies on the fact that any class processed by our classloader implements the
Transactional interface, and thus, at runtime, we can avoid stopping speculation
unless really needed, as shown in Listing 1.1.

4.3 Modifications for MLS

Whereas the previous modification steps of the JaSPEx-MLS classloader pre-
pared application code to run with transactional semantics, the final step readies
the code for MLS.

To add support for MLS, JaSPEx-MLS replaces normal method calls with a
call to a special spawnSpeculation() method. This method receives a Callable
object, representing the original method invocation and its arguments, and re-
turns a Future, representing the value that will be returned by the target method.

The Callable object is an instance of an automatically generated class that
includes slots for each argument to the method call. When the call() method
is invoked, it proceeds to call the original method.

The most complex part of the insertion of spawnSpeculation() is dealing with
the returned future. The main objective of the transformation performed is to
delay to as late as possible the retrieval of the result from the future, as it would
entail waiting if the value is not yet computed. Thus, the trivial case where the
future is immediately needed is not useful,3 as nothing would be gained from just
transferring execution to another thread, and so JaSPEx-MLS rejects this case.
The other trivial case, where the value returned from the method is discarded,
or the method is void, is useful, but needs no further modifications other that
popping the future off the stack.

A more interesting case however, is the common pattern of saving the result
of a method on a local variable for later use. The JVM bytecode specification

3 JaSPEx-MLS currently does not employ return value prediction [7, 14].



void example() {
int x = 0;
if (condition) {
Future f0 = spawnSpeculation(...); // original method: compute()
x = f0;

}
int y = x + 1; // error: is x an int or a future ???
{ ... code that uses y ... }

}
Listing 1.2. Example of problematic replacement of a returned value with a future.

void example() {
int x = 0;
if (condition) {
Future f0 = spawnSpeculation(...); // original method: compute()
x = f0;
goto x_is_a_Future;

}
int y = x + 1; // x is an int

rest_of_the_method:
{ ... code that uses y ... }
return;

x_is_a_Future:
int y = x.get() + 1; // x is a future
goto rest_of_the_method;

}
Listing 1.3. Valid version of the code from Listing 1.2, obtained by duplicating part
of the method.

allows any type to be stored in any local variable (and this type can change
during execution of a method), so we are allowed to write the future to the same
local variable as the original return value would have.

The problem with this substitution is what happens when the return value
is accessed. Consider for instance the code shown in Listing 1.2: This transfor-
mation is not valid, because the x local variable may be of type int in a possible
path through the method, and of type Future on another path.

To solve this problem, we construct the control flow graph of the method
and duplicate code blocks where both a future and the original return type
may be present. As an example, Listing 1.3 shows the correct version of the
transformation shown in Listing 1.2.

To avoid spawning speculative executions that would run only a small number
of instructions before needing to synchronize with other threads, JaSPEx-MLS
does a number of passes that perform simple analysis to try to avoid these cases.
In addition, the MLS modification pass can use a list of methods that are known
not to be profitable for speculation: This list may either be manually provided,
or be the result of profiling performed on the application.

4.4 STM Support for Futures

To further delay the moment when we need to obtain the return value from the
future, we added to our STM support for writing futures to memory locations.



// Original Method
void doCompute(Object[] results) {
for (int i = 0; i < results.length; i++) {
results[i] = compute(i);

}}

// Attempted parallelization
void doCompute(Object[] results) {
for (int i = 0; i < results.length; i++) {
Future f0 = spawnSpeculation(...); // original method: compute(i)
TM.storeObjectArray(results, i, f0.get()); // get() called immediately

}}
Listing 1.4. Unsuccessful parallelization of doCompute().

void doCompute(Object[] results) {
for (int i = 0; i < results.length; i++) {
Future f0 = spawnSpeculation(...); // original method: compute(i)
TM.storeFutureObjectArray(results, i, f0); // f0 is handed to the STM

}}
Listing 1.5. Successful parallelization of doCompute(), with the added support for
futures in the STM.

Consider, for instance, Listing 1.4: In this case, the transformation performed
in Section 4.3 to add the spawnSpeculation() call would not be useful, as the
resulting code would immediately obtain the return value from the future, so
that it can be written into the array.

In reality, due to the transactification step performed in Section 4.1, the
write to the array is not done directly, but instead the value to be written is
handed over to the STM. We can take advantage of this behavior to extend the
STM with support for futures, allowing the resulting code to behave as shown
in Listing 1.5.

Note that if each execution of compute() that is being replaced by spawn-
Speculation() is fully independent, the example method (and the loop contained
therein) has gone from not being parallelizable, to being fully parallel, as the
entire loop can be executed without stopping speculation, and the doCompute()
method can even return to its caller, allowing other work to be done, while the
computation of the values proceeds in parallel.

5 Runtime Orchestration of Speculative Executions

The JaSPEx-MLS runtime library is responsible for the creation and coordina-
tion of speculative executions.

A speculative execution starts when an application reaches a call to the
spawnSpeculation() method, which was previously inserted by the JaSPEx-MLS
classloader as a replacement for a normal method call. Inside this method, the
framework dynamically decides weather a new speculation should be spawned
by taking into account the current workload of the system. Because in our sys-
tem nested speculations are supported, speculative executions can spawn further
speculative executions.



If JaSPEx-MLS chooses to spawn a speculation, it starts by capturing a
first-class continuation representing the stack and execution state of the current
thread. Remember from Figure 1 in Section 2 that this execution state will be
resumed on another thread, while the current thread will continue by execut-
ing the method call contained in the Callable received by spawnSpeculation().
To represent the task being spawned, JaSPEx-MLS creates a new instance of
SpeculationTask and submits it for execution by the thread pool.

The created SpeculationTask instance is the link between the parent task
— the task that reached the call to spawnSpeculation() — and the child task,
which will resume the continuation and start its execution of the code following
the call to spawnSpeculation(). This parent/child relation implicitly imposes a
global order on all tasks on the system that mirrors the original order on the
sequential application.

After submitting the child SpeculationTask for execution, the parent task
cleans its current thread’s stack by resuming an empty continuation, and pro-
ceeds to execute the method represented by the Callable. When the method
returns, its return value is stored inside the child SpeculationTask, so that the
child task will be able to retrieve it, and the thread running the parent task
returns to the thread pool.

When the child SpeculationTask is picked up for execution by a thread, we
first test if the task’s parent already finished by checking if its result is available.
If it is not, a new STM transaction is started, otherwise, because its parent
already committed, no transaction is started and the task is executed in program-
order mode. The thread then resumes the first-class continuation captured by
the parent task: Upon resuming the continuation, execution restarts inside the
spawnSpeculation() method, and JaSPEx-MLS returns a future to the caller
method — representing the promise of a return value from the parent task —
and the child task continues its execution.

This design where the thread that reaches the spawnSpeculation() throws
away its stack and executes the parent task, while the child task will start by
restoring the very same stack was chosen so as to allow tasks to be queued even
when there are no free threads to execute them. The inverse option, where the
thread that reaches the spawnSpeculation() would execute the child task and
queue the parent for execution could in many cases delay the application, as the
child task would not be able to commit its work before its parent was finished.

5.1 Committing a Speculation

There are three conditions that trigger the commit of a speculative task:
1. The task completed its work
2. The task needed to obtain a result from a future, and noticed that it was

the oldest-running task in the system
3. The task attempted to execute a non-transactional operation

A speculative task is allowed to commit its work only if it is the oldest-running
task in the system. In our design, every task has a parent that spawned it, and
that parent is responsible for writing its result onto the child’s SpeculationTask.



Every parent commits before its child task and before passing its result to the
child. Thus, when a child receives the result from its parent, it can also commit
because it is guaranteed that its parent has finished its work.

When a task wants to commit, but no result from its parent is available,
it waits on its own SpeculationTask for this value to arrive. Note that it may
be possible that its parent is in the same situation, and that a sequence of
speculative executions are all waiting for their own parents. When a parent sets
its value on the child, it wakes up the child, so that the child can resume working.

After a child task receives the result from its parent, we first check for two
special cases: an exception and an order to abort. If the result from the par-
ent is an exception, then whatever work the current speculative task has done
is invalid: In the original application, this code would never run, because the
exception would be thrown before the code was reached. So, when this hap-
pens, the child task aborts its current STM transaction, signals its own child
speculation (if any) that it should abort, and retries execution by re-resuming
the continuation (which re-initializes the current execution stack back inside
the spawnSpeculation() method) and by re-throwing the exception thrown by
the parent. This scheme simulates the way the exception would appear in the
original application. In case the speculation receives an order to abort, either
because its parent (or any grandparent) aborted due to an exception or because
a mis-speculation was detected by the STM, the current task aborts its own
transaction, signals its child (if any) to abort also, and the thread is returned
to the thread pool. Any computation done was wasted, because it was based on
invalid assumptions.

When a thread attempts to commit, but the validation of the STM transac-
tion fails, the transaction is aborted, and the task is retried by re-resuming the
continuation received from the parent. For the re-execution, no transaction is
started, as the task will be running in program-order, rather than speculatively.

Finally, whenever a task finishes its work and is able to commit successfully
its STM transaction, it writes its return value on its child SpeculationTask and
the thread hosting it is returned to the thread pool.

5.2 Custom Relaxed STM Model

The STM used in JaSPEx-MLS was designed to be very lightweight, so as to im-
pose minimal overheads on the transactified application. It clearly distinguishes
between two modes of execution: program-order mode and speculation mode.

A task that is executing in program-order mode always reads from and writes
to memory directly, with no additional validation nor synchronization: At any
given time, only one task is working in program-order; any other threads exe-
cuting tasks are performing speculative execution.

When the program-order task attempts to write a future into a memory lo-
cation, the return value from the future is immediately retrieved as, per the
structure imposed by the method-level speculation scheme, that future repre-
sents the result of a previous speculation that must already have finished.



Like most STMs, for tasks running in speculative mode, JaSPEx-MLS keeps
both a (value-based) read-set, which contains each heap-allocated memory loca-
tion read by the transaction and its value at the time, and a write-set, which
maps memory locations to values to be written to them upon commit.

In our STM model, tasks running speculatively always read directly from
the requested memory location, and may observe changes being done concur-
rently by a task running in program-order mode. This strategy can, of course,
cause inconsistent reads, but unlike normal applications that use STM, incon-
sistent reads are always present in the execution model, and are handled by the
framework.

When a read of a memory location is attempted, and there is already an entry
in the write-set for that location, the value from the write-set is returned. If the
entry in the write-set contained a future in place of the real value, the result
from the future is first retrieved (by waiting, if necessary), and then returned.

Whenever a speculative task wants to perform a write, a new mapping is
added/updated to the write-set: a pair (location, newvalue) for normal values,
and a pair (location, future) for futures.

Because the task coordination part of JaSPEx-MLS always commits transac-
tions in the same order as the original sequential application, only one transac-
tion will be trying to commit at any one time, dismissing the need for synchro-
nization during the commit operation. As such, the commit operation consists
of only two simple steps: (1) validating the the read-set by re-reading the val-
ues from the memory locations and comparing them to the ones originally read
and kept in the read-set; and (2) performing the write-back of values from the
write-set to the memory locations, including retrieving and writing the results
from any futures.

5.3 Thread and Task Management

When a new speculative task is created, JaSPEx-MLS submits it for execution to
a thread pool. The current design of the thread pool allocates a limited number of
threads based on the number of CPUs on the machine, and accepts speculations
only when there are idle threads.

This design is very simple, and we intend to improve it in the future in
two ways: (1) by returning threads to the pool instead of waiting; and (2) by
integrating a task scheduler.

The idea of returning threads to the pool instead of waiting is applicable when
there is a great imbalance between the size of speculative tasks that threads are
working on. If, for instance, the oldest task in the system is executing a very long-
running code section, and all the other threads have, in the meantime, finished
their work, and are waiting for permission to commit, no further speculations
are accepted, and the application would be executing sequentially. Instead, we
plan to have waiting threads capture a first-class continuation with their current
state, which would then be associated with their parent. Then, when the thread
running the parent task finishes its work, instead of immediately returning to
the thread pool it would switch to and finish execution of its child task. This
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Fig. 2. Slowdown introduced by the bytecode modifications performed by JaSPEx-
MLS (speculation was disabled) with the JVM in interpreter-only mode (left), and
normal optimizing mode (right). Only transactification accounts for the modifications
described in Sections 4.1-4.2, whereas Transactification + spawnSpeculation accounts
for all bytecode modifications. Results were normalized to the runtimes of the unmod-
ified applications.

way, waiting threads would be free to return to the thread pool, where they
may accept new speculative tasks that are submitted by the very busy thread,
speeding up its execution once again.

Baptista [3] was able to integrate a conflict-aware scheduler into an older
version of the JaSPEx framework. His work shows promising results, and we
intend to adapt it to JaSPEx-MLS in the future.

6 Experimental Results

In this Section, we present preliminary experimental results obtained with the
JaSPEx-MLS framework. We tested our prototype on an Intel Core i5 750 ma-
chine with 8GB of RAM, running Ubuntu Linux 12.04 64-bit, and our modified
OpenJDK VM.

We tested several JVM applications: the JScheme R4RS Scheme implementa-
tion, the Sunflow ray tracing engine, the Avrora hardware simulator and analysis
framework, the Kahlua Lua scripting language interpreter, and some benchmarks
from the the Java Grande Forum (JGF) benchmark suite. Apart from Sunflow,
the chosen benchmarks are single-threaded, although some of them employed
locking and thread-local variables in some places, which we removed; we modi-
fied Sunflow to use only the single main thread to perform its rendering work.

We first measured the overheads imposed by our system when speculation is
disabled. Figure 2 shows the overhead we measured, when comparing our sys-
tem to the original sequential application runtime, in two cases: (1) running
the JVM in interpreter-only mode (-Xint mode), and (2) with the full Hotspot
VM optimizations enabled. Using only the interpreter, our bytecode modifica-
tions impose heavy overheads, but when running with optimizations enabled, we
can see that the VM is successfully able to optimize away many of the added
indirections, showing that our lightweight STM imposes minimal overhead on
application code running in program-order. The results also show that blind con-
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Fig. 3. Results from benchmarking with JGF benchmarks, normalized to the origi-
nal application runtimes. Values above 1 correspond to a speedup, whereas below 1
correspond to a slowdown.

version of normal method calls into spawnSpeculation() also imposes non-trivial
overheads, suggesting the importance of the integration of a profiling pass to
remove unprofitable calls in our framework.

Results from testing with benchmarks from the JGF benchmark suite are
shown in Figure 3. The input applications were not modified, but some manual
profiling was done and a blacklist of methods unsuitable for speculation was
provided to JaSPEx-MLS. The series benchmark was able to obtain a speedup
of 1.7x, lufact was not able to perform any meaningful speculation, crypt was
not able to extract speedup from the speculation done, heapsort had an over-
whelming number of aborted transactions, and both sor and sparsemult (not
shown) are not suitable for MLS parallelization as all their computation is done
in a single method. These results again underline the need for a semi-automatic
profiling pass that can avoid unprofitable executions, but also that it is possible
to extract parallelism using JaSPEx-MLS.

7 Related Work

Many TLS proposals depend on some kind of hardware transactional support;
unfortunately, while such support remains absent from common architectures
these systems remain impractical. Jrpm [5] is a Java VM that does speculative
loop parallelization on a multiprocessor with hardware support for profiling and
speculative execution. At runtime, applications are profiled to find speculative
buffer requirements and inter-thread dependences; once sufficient data is col-
lected, the chosen loops are dynamically recompiled to run in parallel. Helper
Transactions [21] rely on special hardware support to perform method-level spec-
ulation. The authors introduce the concept of implicit commit, allowing a thread
that finished working to signal its sibling speculation to commit; this sibling
speculation should then validate itself, commit its current work and continue
executing non-speculatively. The advantage of this approach is that the oldest
speculation in the system automatically switches off speculative execution as
soon as possible, lowering execution overheads.

Because executing code transactionally can impose very large overheads, re-
cent TLS proposals, similarly to JaSPEx-MLS, try to optimize the transact-
ification and transactional model as much as possible: Oancea, Mycroft and
Harris [11] proposed SpLIP, a software speculation system that targets mostly-
parallel loops. The authors concentrated on avoiding performance pitfalls present



on other software TLS proposals by having speculations commit their work in
parallel, and using in-place updates. This contrasts with our approach of keeping
changes in the write-set until commit, and increases the penalty for bad specula-
tion decisions, which involve costly rollback operations, prompting a very careful
analysis when choosing loops to parallelize. In [10] the authors propose STM-
lite, a lighter STM model targeting loop parallelization. STMlite aims at using
a small number (2-8) of speculative threads to extract parallelism from loops,
avoiding the need to transactify the whole program. During execution, transac-
tional read and write operations are encoded using hash-based signatures that
are then checked by a central bookkeeping and commit thread. Fastpath [15] is
also aimed at extracting parallelism from loops using speculation. The transac-
tional system distinguishes between the thread running in program order, and
other speculative threads: The lead thread always commits its work, and has
minimal overhead, whereas speculative threads suffer from higher overheads and
may abort. The authors also propose two different STM-inspired algorithms for
conflict detection: value and signature-based. In both conflict detection algo-
rithms, the lead thread is always allowed to change memory locations in-place.
The Fastpath system as presented did not yet support automatic parallelization;
results from a hand-instrumented benchmark showed that the value-based algo-
rithm presented the best results. The JaSPEx-MLS relaxed STM model is very
similar to the Fastpath value-based algorithm, the biggest difference being our
inclusion of support for futures in the STM.

The idea of using futures in Java coupled with speculative execution was also
explored in a different context by Welc et al. [17]: In their work on safe futures
for Java, the authors extend Java with support for futures that are guaranteed
to respect serial execution semantics. Because of this, futures can be thought of
as semantically transparent annotations on methods: Execution of a method can
be replaced with the execution of a future, the safe future model guaranteeing
that sequential semantics is respected. In contrast with our automatic approach,
to use safe futures programmers manually change their code to employ futures
instead of normal method calls, including solving cases where the return value
from a method is used immediately. Zhang and Krintz’s Safe DBLFutures [22]
also support a similar approach, and includes safe handling of exceptions that
respect sequential semantics.

SableSpMT [13] is a Java MLS-based automatic parallelization framework.
To allow speculation even when the return value of a function call is needed
immediately, SableSpMT employs return value prediction [14]. Nested specula-
tion is not allowed, limiting some of the achievable parallelism: Although the
main thread is allowed to spawn multiple speculative tasks, the tasks them-
selves cannot spawn further speculative tasks. Before running an application,
SableSpMT performs a static analysis and modification pass on the input appli-
cation: This pass inserts fork points into the application bytecode, and gathers
information to be used by the return value predictor. SableSpMT is based on
the SableVM virtual machine, which is a research VM, employing only an inter-
preter and a simpler garbage collection algorithm. The system was benchmarked



using the SPECjvm98 benchmark suite on a quad-cpu machine, but no speedup
was achieved over the original application runtimes due to the added overheads.
In further testing with fork and join overheads factored out by considering a
baseline execution where every speculation fails to commit at the end, Sable-
SpMT was able to achieve a mean relative speedup of 1.34x. In contrast with
SableSpMT, JaSPEx-MLS fully supports nested speculation, and in our system
the garbage collector works normally, whereas in SableSpMT it invalidates all
running speculations. The base SableVM is also a much simpler VM, with no
support for Java 6 and none of the advantages of OpenJDK as introduced in
Section 3.

8 Conclusions and Future Work

In this paper, we introduced the design of JaSPEx-MLS, an automatic paral-
lelization framework for the Java platform. Our framework needs no hardware
transactional support, and works atop a modern production-quality managed
runtime supporting JIT compilation and advanced garbage collection facilities:
the OpenJDK Hotspot virtual machine.

We described how the JaSPEx-MLS classloader transactifies applications,
and also how it converts method calls into speculation spawn points. We also
presented a novel approach to enable further speculation by integrating support
for the futures returned at spawn points into the STM, allowing the application
to behave as if the future itself was written to a memory location. We then
described how speculative tasks are orchestrated at runtime, and the design of
our lightweight relaxed STM model.

Our preliminary results show that an optimizing VM can hide much of the
overhead introduced by our static bytecode preparation, and also that JaSPEx-
MLS is already able to extract parallelism in some benchmarks.

In the future, we intend to lift some of the limitations imposed by our han-
dling of non-transactional operations, to add support for a profiling pass that
gathers information on the most profitable methods for speculation, and to im-
prove the runtime scheduling of tasks and reuse of threads in the thread pool.
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